
USD at Scale
Jon-Patrick Collins

Animal Logic
Sydney, NSW, Australia

jonc@al.com.au

Romain Maurer
Animal Logic

Sydney, NSW, Australia
romainm@al.com.au

Fabrice Macagno
Animal Logic

Sydney, NSW, Australia
fabricem@al.com.au

Christian Lopez
Barron

Animal Logic
Sydney, NSW, Australia
christianl@al.com.au

Figure 1: USD Asset Graph component, presenting the physical USD structure of a typical production shot, alongside a live 3D
viewport render of the same shot. The graph flows from left to right, with the shot entity to the left, connected to downstream
domains, subdomains, fragments and technical variants. This USD ALab Open Source Scene is available for public use at
https://animallogic.com/usd-alab/.

ABSTRACT
We describe key steps in the process by which an animation and
VFX studio (Animal Logic) integrated Pixar’s Universal Scene De-
scription™ into a large existing legacy pipeline. We discuss various
architectural choices, as well as software systems developed to sup-
port these patterns. This successful USD migration has enabled the
studio to significantly improve its toolchain productivity, support-
ing the simultaneous development of multiple feature films.

CCS CONCEPTS
• Computing methodologies → Graphics systems and inter-
faces.

KEYWORDS
USD, Pipeline, VFX, Workflow

ACM Reference Format:
Jon-Patrick Collins, Romain Maurer, Fabrice Macagno, and Christian Lopez
Barron. 2022. USD at Scale. In The Digital Production Symposium (DigiPro

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
DigiPro ’22, August 7, 2022, Vancouver, BC, Canada
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9418-5/22/08. . . $15.00
https://doi.org/10.1145/3543664.3543677

’22), August 7, 2022, Vancouver, BC, Canada. ACM, New York, NY, USA,
6 pages. https://doi.org/10.1145/3543664.3543677

1 INTRODUCTION
Historically, Animal Logic used a generative approach to scene con-
struction, whereby atomic assets were assembled by tools based on
distinct workflow requirements, without requiring the use of an
explicit scene description. This system was mostly database-driven,
and required extensive tooling. This approach was labor-intensive
and required large amounts of software code and manual config-
uration. Whilst our toolchain itself was shared across workflows,
the underlying assets were heterogeneous, with many file formats
involved.

A short-lived attempt to develop an in-house Common Scene
Description (CSD) format ended with the acknowledgment that
developing such a system is a very significant undertaking that was
beyond our development scope.

Following the open-sourcing of Pixar’s Universal Scene Descrip-
tion™ in 2016, we embarked on a phased rollout of USD, with a
successful pilot project by the Animation team on Peter Rabbit (2018)
with the Forge™ shot-building application [Baillet et al. 2018]. Fol-
lowing this success, we undertook a major migration of the entire
pipeline to USD with Peter Rabbit 2 (2021).

Our USD toolchains continue to mature on our current slate
of projects that include DC League of Super-Pets (2022) and The
Magician’s Elephant (2023), with a focus on building USD content
at scale. We now generate many millions of USD files during the
lifetime of a typical production. The transition to USD has allowed

https://animallogic.com/usd-alab/
https://doi.org/10.1145/3543664.3543677
https://doi.org/10.1145/3543664.3543677

DigiPro ’22, August 7, 2022, Vancouver, BC, Canada J. Collins et. al.

us to consolidate many workflows and technology stacks, with an
efficiency gain that now allows us to develop multiple feature films
concurrently.

2 ARCHITECTURAL CHOICES
When designing our USD-based pipeline, we needed to consider
many concerns such as: how to model pipeline content and work-
flows as atomic USD files; how to ensure that these USD files are
composed in the most efficient way possible; how to automate the
generation of USD files, including bulk rebuilds of many files; how
to support packaging and versioning of USD files; how to balance
the need for a centralized scene description with the decentralized
nature of development teams across projects, locations and depart-
ments; and how to support parallel workflows across departments.
These constraints led to the following design choices.

2.1 Fragment-Based Composition
A common software pattern in video game design is the Entity-
Component-System (ECS) pattern, whereby entities are not defined
by their “type” but rather by the components from which they are
assembled. For example, an entity might be renderable if it contains
a geometry component and might be simulatable if it contains a
physics component.

We were inspired by this pattern to create a library of reusable
global fragments, along with additional libraries of shot-specific
fragments. Each fragment is defined by a USD file that typically
references, sublayers or payloads other USD (and non-USD) files.
Fragments represent units of reusable functionality, such as geome-
try, rigging or UV bindings. We then modeled top-level breakdown
concepts (such as characters, props and shots) as entities, where
each entity is defined by a USD file that contains a list of fragments
that it references.

This clean separation between entities (aggregates of function-
ality) and fragments (units of functionality) is a key design choice
from which much flows. A key result of this pattern is that it dis-
courages a profusion of project-specific, typed entities and reduces
the number of key concepts to be modeled by various software sys-
tems. This was a break from our previous pipeline, where every new
pipeline concept required its own software and configuration stack,
and where stale, project-specific types persisted in the codebase.

Figure 2: Composition arc diagram, used to describe the re-
lationships between entities and fragments.

This pattern seeks to achieve complexity through the combi-
nation of fragments and their interplay, rather than by manually
hard-coding each new top-level concept that arises during produc-
tion. The pattern also seeks to create reusable functionality in the

form of libraries, where fragments are the unit of reuse and where
any given fragment may be referenced by multiple entities.

2.2 Entity-Based Composition
In the standard composition pattern, entities reference fragments,
but fragments do not reference entities. However, in order to sup-
port entity assemblies such as environments, which are aggregates
of many set pieces, we introduced certain fragments that reference
entities. Notably, we utilize the Assembly and Breakdown frag-
ments, both of which contain lists of references to other entity USD
files.

We use the Assembly fragment to define entity assemblies such
as environments, and we use the Breakdown fragment to populate
shots with characters, props, environments, cameras and lights. The
main distinction between the two is that assemblies are intended
for more straightforward compounding of simpler entities, whereas
entities added to a shot breakdown are intended to be heavily
modified by many additional layers of tweaking, motion and other
USD opinions.

Figure 3: Global Fragment browser, with fragments catego-
rized by their fragment type and compatible domains.

2.3 Entity Domains
We introduced an additional layer of organization between enti-
ties and fragments, the entity domain. Entity domains represent
contributions to an entity from a single logical workflow such as
Modeling, Rigging or Surfacing. Entities are then constructed as
a stack of domain sublayers, each of which references potentially
many fragments.

Entity domains provide a natural mapping to departments and
workflows, and the relative strength of domains (as configured on a
per-project basis) is reflected in the relative order in which they are
appended to the entity sublayer stack. A key result of this design
pattern is that it clearly demarcates the area of responsibility for

USD at Scale DigiPro ’22, August 7, 2022, Vancouver, BC, Canada

each department, and ensures that the final deliverable of each
departmental workflow is an entity domain USD file where all USD
content can be readily sublayered by a referencing entity.

2.4 Technical Variants
We separated out the heavy payload data of fragments into separate
technical variant asset files. Many technical variants are stored
as native USD files (typically .usdc files for heavy content and .usda
files for lighter content), but many are also external file formats
(such as Foundry Nuke™ .nk or SideFX Houdini™ .hou files) or
standard data formats such as XML, YAML or TOML.

Fragments will usually define a USD variant set, where each
named variant references a technical variant asset. For example, the
Modeling entity domain references a Geometry fragment, which
then references multiple geometry technical variants via a variant
set, where each technical variant is a different resolution or use-case,
such as BaseMesh, PoseMesh or HighResolutionDeformationMesh.

2.5 Packaging
Prior to USD, Animal Logic used a convoluted asset packaging
system that had evolved over many years with an opaque toolchain.
Migrating to USD provided us with the opportunity to streamline
and modernize this toolset.

In order to package USD content, we simply snapshot USD files
but swap unversioned identifiers with versioned identifiers. We op-
tionally also post-process these USD snapshots as needed, with
some content pruning and injection of metadata (such as bounding
box extents). This creates a simple and powerful way to create
snapshots of asset hierarchies, since we can repeat this process
recursively through the USD graph topology. We only create pack-
age files for lightweight USD scaffolding content (namely entities,
domains and fragments); we do not create snapshots for technical
variants.

We store packaged assets with identifiers that have been ex-
tended to include the package state, with values such as Live,
Output or Delivered; these are published as new assets on disk. In
addition, at stage load time, we can also specify dynamic over-
rides of package states and versions in order to control which
assets we want to use for any given workflow. Different workflows
may require a blend of assets using different packaging rules; for
example, a given workflow may call for the loading of a Live entity
(where all content resolves to latest versions) but with Delivered
modeling geometry (resolving to the latest delivered version, even
if there is a newer non-delivered version).

3 IMPLEMENTATION
Our first approach to generating USD content was centered around
our existing production database. Users would explicitly add new
content to the database, which would trigger a script that would
rebuild USD content. This system was fairly rigid and rapidly de-
volved into a large collection of complex scripts. The key flaw,
however, was that USD generation first required updating the pro-
duction database. Our next iteration of software sought to remove
any dependency on the production database, allowing tools to cre-
ate production-ready USD assets without needing to populate the
production database with spurious or experimental content.

Figure 4: Open Selected Version dialog, a utility window for
artists to select a specific version of a given entity to open.
The dialog displays the various package states and their as-
sociated versions discovered for the given entity.

3.1 LEAF Toolkit
To support standalone entity-fragment content creation, we de-
veloped the LEAF (Layered Entities and Fragments) Toolkit, a
collection of Python libraries that provides a suite of functionality
for USD file creation and editing. Some key characteristics of LEAF
include:

• A collection of general-purpose facade classes such as FnEntity,
FnDomain, FnFragment and FnTechVariant that model our
entity-fragment concepts. We use this API layer to ensure a
consistent approach to creating, editing and traversing USD
content, ensuring it conforms to our USD design patterns.

• An extensive registry of factory builder classes used to con-
struct and modify specific domain and fragment types. Cur-
rently, we have builders registered for over 60 different do-
main and fragment types, eachmaintained by technical direc-
tors (TDs) from their relevant craft groups. Builders provide
a managed, extensible ecosystem for the creation of USD
content, allowing contributors from across the organization
to extend the overall USD scene description but within a
constrained framework.

• An extensive library of configuration files that define vari-
ous default entity-fragment topologies when creating new
entities. Configuration files allow for a clean separation of
code and data; these files are stored in TOML format and
maintained by TDs for each active project.

3.2 AssetWorkshop Toolkit
The next phase of work involved developing the AssetWorkshop
Toolkit, an ecosystem of tools that allow artists and TDs to view
and edit USD graphs using intuitive hypergraph-style user inter-
faces, with rich interactive tools for selection, context menu com-
mands, drag-drop capabilities and more. This work introduced:

• AssetWorkshop API, a higher-level Python library that
encapsulates LEAF with a simple, object-oriented API that

DigiPro ’22, August 7, 2022, Vancouver, BC, Canada J. Collins et. al.

Figure 5: FilmStudio™, a comprehensive tool for viewing and editing USD entities and fragments.

includes tighter integration with our production database;
a rich collection of commands for modifying USD graphs,
such as inserting domains and fragments; and improved
UI support with production media, tooltips and other UI
elements.

• USD Asset Graph, a reusable user-interface component
developed in Qt and available for use by in-house applica-
tions. Powered byAssetWorkshop, this view includes context
menu commands for inserting and deleting graph content;
drag-drop support for adding content; and visual feedback
indicating the status of each USD file.

3.3 VirtualBreakdown Toolkit
Our more recent phase of work has involved developing the Vir-
tualBreakdown Toolkit, a high level collection of tools based
around "virtual breakdowns"—recipes that describe one or more
entities from a logical perspective. The motivation for VirtualBreak-
down was two-fold.

In some workflows, users are more interested in a higher-level,
logical view of content than they are in a lower-level asset-based
view. For example, they may be interested in working with a shot
manifest that describes the content of a shot, such as its characters,
props, lights, environment and cameras.

Also, users may be working with large numbers of entities at
a time, and do not require opening every entity as a separate in-
memory USD stage. In some cases, they may be updating dozens or
hundreds of shots and require an efficient way to work with these

without incurring a non-trivial (often over 30 second) stage load
time per shot. This work built on LEAF in the following ways:

• VirtualBreakdown API, a higher-level Python library that
describes a hierarchical asset recipe that can be processed
locally to generate USD content; or can be published, which
involves offline processing to generate and check-in USD
content as well as updating the production database.

• Virtual Breakdown Editor, a user-interface component
developed in Qt and available for use by in-house applica-
tions. Powered by VirtualBreakdown API, this component
uses an outliner-style approach to displaying entities and
their logical content.

4 MILESTONES
The transition from our classic generative pipeline to our modern,
USD-based pipeline occurred over an extended period, punctuated
with key milestones associated with certain productions. We used
the same assetmanagement system across all versions of the
pipeline, allowing us to support multiple pipelines in parallel dur-
ing this transition. In particular, wewere able tomaintain our classic
pipeline on The Lego Movie (2014), The Lego Batman Movie (2017),
The Lego Ninjago Movie (2017) and The Lego Movie 2: The Second
Part (2019) whilst developing a parallel USD-based pipeline.

4.1 USD pipeline prototype
We sought to integrate USD into a limited subset of our pipeline,
in order to manage risk and with an existing toolset as a fallback

USD at Scale DigiPro ’22, August 7, 2022, Vancouver, BC, Canada

option. On Peter Rabbit (2018), we selected the Animation pipeline
as a suitable prototype test-case. One motivation for this choice
was that this pipeline was already undergoing an abrupt platform
change from SOFTIMAGE|XSI™ to Autodesk Maya™. Development
included:

• A suite of USD generators that process the production
database to generate corresponding USD layers (noting that
asset formats themselves remained unchanged, such as the
use of Alembic as our baked geometry format);

• An artist-facing application (Animal Logic Forge™) that
allows animators to load and manipulate USD content within
a Maya context, including the ability to toggle visibility,
active status and active variant of individual USD layers;

• A custom Maya plugin (AL_USDMaya) to translate live
USD composed stage content into native Maya data.

4.2 Technical migration
We reflected on the generalized design requirements that would
be needed to roll out USD across all pipelines. This design phase
culminated in the entity-fragment design pattern and the de-
velopment of LEAF Toolkit to manage USD content generation.

Certain less-successful features of the USD prototype were aban-
doned, such as the storage of Python code as USD attributes,
which had been an attempt describing workflows inside USD as-
sets; and the storage of user-interface configuration using USD
layers, which was beyond the natural scope of USD.

Embarking on a wide rollout of USD on Peter Rabbit 2 (2021),
we generated USD content in parallel with existing assets for all
pipelines, and introducing USD-based packaging.

Our existing artist-facing tools were re-engineered internally to
work with USD assets as inputs, but were otherwise unchanged.
This phase was technically risky, as the project success was pred-
icated on this novel design pattern. Also, artist disenchantment
was considerable, as many tools suffered workflow breakages, poor
performance or perceived degraded functionality. We developed:

• An artist-facing application (Animal Logic Environment
Studio™) that allows set dressing artists to load and manip-
ulate USD content within a Maya context. This was our first
studio tool based on the new entity-fragment paradigm.

• The Performance (Layout and Animation) pipeline was up-
graded with a slightly modified version of Forge™ compati-
ble with new LEAF pipeline.

4.3 Initial workflow migration
In order to fully realize the value of a USD-based pipeline, we needed
to upgrade the full range of artist-facing tools to work with
USD concepts natively, rather than simply using USD as a back-end.
This process had a number of challenges, including artist resistance
to redesigning existing tools, and the need to communicate the
entity-fragment design pattern more fully. This work was carried
out during the development of DC League of Super-Pets (2022).
Development included:

• TheAssetWorkshop Toolkit, and its deployment in a new
artist-facing application (Animal Logic FilmStudio™) to

Figure 6: Workspace view deployed with Forge™ to manipu-
late scene content.

allow asset TDs and coordinators to explore production con-
tent in a fully entity-fragment compliant manner, with the
ability to create and edit assets graphically using interactive
visual controls;

• Upgrading studio tools suchAnimal Logic Filament™ (our
proprietary lighting tool) to use the entity-fragment pattern;

• Dropping support for non-USD formats for technical variants
where possible, such as removing the generation of Alembic
baked geometry data in favor of USD binary (.usdc) format.

4.4 Further workflow migration
We have continued enhancing our USD-based workflows on The
Magician’s Elephant (2023), The Shrinking of Treehorn (2023), and
two further as-yet-unannounced projects. We are still working to
complete feature parity with our classic pipeline. Most workflows
have been migrated to use USD entities as their entry point. Re-
cently development has included:

• The VirtualBreakdown Toolkit and its deployment in
FilmStudio™ as a next-generation workflow for assembly
artists to populate shots;

• New workflow tools, including Animal Logic Modeling
Studio™ for modeling artists to work with Maya in a USD-
based manner.

DigiPro ’22, August 7, 2022, Vancouver, BC, Canada J. Collins et. al.

Figure 7: Virtual Breakdown view, presenting the logical
structure of a typical production shot.

5 DISCUSSION
The processes that we have described generate USD content that
can be consumed by any USD-aware system. The only propri-
etary concepts in our USD scene descriptions are the usual USD
extensions, such as kinds.

Our pipeline is built around the idea of reusable USD content
in the form of fragments, where each fragment type has associated
registered builder logic. Any part of the fragment library, from
geometry to materials to motion, can potentially be referenced by
any entity. Importantly, entities and fragments are ultimately an
organizational approach to provide a taxonomy on top of our USD
assets.

We have opted to use entities as the common starting point
to every workflow. All relevant asset references are available
and discoverable through the USD scene description, regardless of
whether any given asset is a USD file or not. We represent non-USD
assets using attributes in the scene description so that external tools
can process them.

A useful characteristic of our current USD pipeline is that entities
are now explicit collections of fragments that are reviewed to en-
sure the correctness of the combination. Our previous pipeline
had no such explicit statement of valid combination, and no way
of knowing which combinations of surfacing variation, rigging
variation, FX variation or lighting variation were valid together.

Another important aspect of our USD pipeline is that content
creation now occurs independently of the production database.
Previously, breakdown content was required to be first registered
with our production database, after which automated processes
would be triggered to generate USD content as needed to sync with
the database. Our USD pipeline inverts this relationship; the LEAF
API creates production-ready USD content without the database
being notified at all, and the VirtualBreakdown API notifies the
production database but only as a final step for consistency, rather
than as an initial step. Artists can now explore variations and ideas
using fully production-ready USD content that can be imported
into digital content creation (DCC) systems like Autodesk Maya™
without the database being clogged with endless churn.

Organizationally, the USD rollout has been a success, notwith-
standing a transitional period in which artists were frustrated with
broken and degraded workflows. Some indicators of this success
include:

• A single USD API replacing many different workflows and
file formats, making for amoreunified and coherent tech-
nology stack, with most concepts expressed in USD, and
less reliance on the production database;

• A more powerful suite of workflow tools has emerged
to manage breakdown changes, with more visibility on the
assets used;

• Departmental contributions are nowmore explicit due to
domain USD assets now defined as first-class concepts (that
map closely to departments), as well as via the improved
USD-based packaging;

• With USD emerging as an industry standard, onboarding
and upskilling technical staff is easier, with increased
sharing of internal resources such as tutorials, glossaries,
documentation and extension libraries.

6 FUTUREWORK
One area of active research and development is the optimization
of asset resolution. For larger USD graphs with potentially thou-
sands of asset identifiers to resolve, the combined asset resolution
duration is a limiting factor in how rapidly we can regenerate USD
content and load USD stages. We are also exploring ways to reduce
the number of generated files, which will be a consideration for any
cloud migration. As an example, some of our larger shots contain
15,000+ asset references, each requiring a separate call to a Web
service.

Another area of ongoing work is providing tools to allow tech-
nical developers to work at extreme scale in order to perform
updates of potentially many thousands of assets across a production.
We are embarking on a range of tools to allow for rapid deploy-
ment of custom scripts in the context of a visual programming
environment to help TDs work more efficiently and powerfully.

We are also aware that our robust migration of content and
relationships out of our production database and into USD state
has in some cases made certain lookups much slower. For example,
we do not store entity-fragment relationships outside of USD itself,
making it difficult to quickly determine which entities use a given
fragment. We are exploring ways to cache key USD content and
relationships in a way that permits rapid search and lookups.

Finally, we are exploring ways to improve our quality assur-
ance, improving the way we analyze domain contributions for
validation and compatibility in order to limit breaking deliveries.

ACKNOWLEDGMENTS
We would like to thank Jens Jebens, Eoin Murphy, Aidan Sarsfield,
Oliver Dunn and Justen Marshall for their leadership in the devel-
opment of the entity-fragment paradigm and packaging system.

REFERENCES
Aloys Baillet, Eoin Murphy, Oliver Dunn, and Miguel Gao. 2018. Forging a New

Animation Pipeline with USD. In ACM SIGGRAPH 2018 Talks (Vancouver, British
Columbia, Canada) (SIGGRAPH ’18). Association for Computing Machinery, New
York, NY, USA, Article 54, 2 pages. https://doi.org/10.1145/3214745.3214779

https://doi.org/10.1145/3214745.3214779

	Abstract
	1 Introduction
	2 Architectural Choices
	2.1 Fragment-Based Composition
	2.2 Entity-Based Composition
	2.3 Entity Domains
	2.4 Technical Variants
	2.5 Packaging

	3 Implementation
	3.1 LEAF Toolkit
	3.2 AssetWorkshop Toolkit
	3.3 VirtualBreakdown Toolkit

	4 Milestones
	4.1 USD pipeline prototype
	4.2 Technical migration
	4.3 Initial workflow migration
	4.4 Further workflow migration

	5 Discussion
	6 Future Work
	Acknowledgments
	References

