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Figure 1: Animal Logic’s USD ALab is an example of a typical production scene using ASH as a layered shading solution.
Our custom UI enables artists to edit the material layers of scene objects. Copyright © 2022 Animal Logic Pty Ltd. All Rights
Reserved.

ABSTRACT
For the past 8 years, Animal Logic has been using its customAnimal
Logic SHading System (ASH) material definition and rendering
technology for all film projects within our proprietary pathtracer
Glimpse. We compare existing solutions for material binding and
layering from MaterialX, PRMan, USD/USDShade, MDL and more,
and show how our own system provides desirable features and
solutions absent from other shading solutions and material bind-
ing/definition specifications. We propose that existing Open Source
projects adopt support for true layered binding, shading and hier-
archical assignment, and further propose such solutions provide
controllable ordering to allow these layering mechanisms to ad-
equately handle typical production scenarios and requirements.
We provide and discuss production examples and further areas for
research.
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1 INTRODUCTION
In 2013 Animal Logic developed Glimpse, a proprietary pathtracer,
initially forWalking with Dinosaurs: TheMovie, as a lighting preview
tool and then for The LEGO Movie as a fully-fledged production
renderer. This provided an opportunity for Animal Logic to rethink
many aspects of rendering, such as the entire concept of material
binding and layering, to include lessons learned from decades of
prior experience. The resulting system, Animal Logic SHading
System (ASH), was designed overmonths of meetings with amodest
team of artists/technicians and developers and first used on the film
Allegiant. Designed to address common production issues, such
as layering of materials, complexity management and assisting in
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modular material construction, it is still in use to this today on our
entire slate of projects.

1.1 Production Requirements
ASH was designed with the following high-level production re-
quirements in mind:

• Simple and flexible layering of multiple materials.
• Re-use of material components/functionality across multiple
primitives, without the need to modify materials themselves.
• Hierarchical assignment/propagation of individual layers for
material binding.
• Material layering complexity should not negatively affect
rendering performance.

1.2 Technical Requirements
Our software engineering team established the following extended
technical requirements which, together, fully address the produc-
tion requirements:

• Hierarchical assignment of material layers to primitives.
• Automatic layering using an array of materials that can be
assigned to primitives using an ordered and named binding
mechanism we refer to as a slot.
• Clear separation between patterns and materials, allowing
the two to be worked on independently and in parallel.
This leads to improved turn-around times for asset look-
development.
• An ability to connect shaders together with automatic bind-
ing of parameters by name-matching. Shaders can be con-
nected either within materials using re-usable subgraphs, or
within the binding system itself using a mechanism we call
material overrides. This allows a slot to act as an extension of
functionality to an existing slot, all supported directly within
the binding mechanism itself.
• Allow users to add complexity to shaders without the need to
modify the shaders themselves. An example is adding a layer
of dust across an entire scene. In ASH this is trivially achieved
by assigning a dust slot to the root of the scene and utilizing
slot ordering to ensure it sits at the top of each composed
material. Due to the one-to-one binding of material systems
we had used in the past, this required tedious manual editing
of all shaders within a scene; pasting the same dust node
network within each material manually, or with error-prone
automation scripts.
• Artist familiarity with Photoshop layering (which is, in es-
sence, an alpha layering system with explicit ordering) made
replicating the essence of this workflow appealing.
• Complex shader layering must not result in prohibitively
expensive render times.
• Avoid the visual artifacts and lack of physical-basis for pa-
rameter-blending with uber shaders, and allow proper han-
dling of metallic surfaces, dielectric surfaces and glossy sur-
faces all within a single flexible framework.
• Provide a rich set of material responses with complex vertical
layering built into them directly.

2 BACKGROUND
The two major concepts we discuss in the context of our work are
material binding, the connection between a renderable primitive
and surface material, and material layering, the combination of
BSDFs / lobes to form complex materials.

2.1 Material Binding
Material binding, also often referred to as material assignment, is
in the majority of cases a one-to-one assignment of materials to
primitives. For our binding system we drew much inspiration from
the co-shader mechanism in Pixar’s PRMan, which allows multiple-
material bindings to a single render primitive. ASH supports a
similar many-to-one binding behavior and introduces a structured
approach to order resolution. At the time of writing, Pixar’s Uni-
versal Scene Description (USD), the defacto VFX standard for scene
description storage and manipulation, does not directly support the
assignment of multiple materials to a single primitive (though we
have managed to support this via custom schemas, more on this
in: Appendix B). We hope that this document might inspire other
scene-description implementations to support multi-material as-
signments to renderable primitives, or at least expose a mechanism
to allow such assignments to be supported as a first-class concept.

2.2 Material Layering
Material layering, with reference to the terminology defined in:
[Harrysson et al. 2021], describes the combination of lobes/BS-
DFs with horizontal (linear interpolation) and/or vertical layering
(optical layering, such as [de Dinechin and Belcour 2022]). Layer-
ing mechanisms are typically implemented within material graphs
themselves via node connections (see: [Pixar Animation Studios
2021]), and hence the binding of materials is not usually capable
of defining any form of layering or extended functionality itself.
One of the core ideas behind the design of ASH was to bring these
different concepts together in a flexible and usage-driven way. We
extend the established terminology slightly:
• Horizontal layering (see Figure 2a) – a shader equivalent
of "Photoshop layering". Refers to the fact that in the real
world, materials are often mixtures of different fundamental
substances. Typical examples are paint sitting atop cement,
surface wear and tear revealing other underlying materi-
als, or decals sitting on top of other materials. This can be
achieved by evaluating multiple materials and blending them
using alpha-layering, or via stochastic evaluation of layers,
which has a very direct physical meaning, since in the real
world, each photon can only hit one type of material, with
blending arising as amacro effect. In Open Shading Language
(OSL) [Gritz et al. 2010], this is typically implemented as a
linear interpolation of closures, but in Glimpse, we perform
stochastic evaluation.
• Vertical layering (see Figure 2c and Figure 2b) – also some-
times referred to as "optical layering", represents dielectric
materials of different densities as multiple coating layers.
Typical examples are coated paints, intricate multi-layered
glass work, and iridescence. The added complication of ver-
tical layering is that light can be reflected and refracted by
each layer transition, which needs to be tracked and handled

https://www.pixar.com/
https://github.com/AcademySoftwareFoundation/OpenShadingLanguage
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(a) Horizontal Layering (b) Strong Vertical Layering

(c) Weak Vertical Layering

Figure 2: Visualization of different layering techniques. A
ray intersecting a horizontally layered material is affected
by exactly one layer, depending on the weights of the layers
at a given surface point (a). Vertical layering means, a ray
may be affected by several (or all) layers of the material by
reflecting or transmitting through interfaces between lay-
ers. We refer to systems that support physically-based light
transport at interfaces and within layers as strong vertical
layering (b). If rays, for example, pass through layers with-
out scattering, we refer to this as weak vertical layering (c).
Copyright© 2022Animal Logic Pty Ltd. All Rights Reserved.

by the system supporting it. Efficient rendering of optically
layered materials is not straightforward and has been of
interest in the research community recently [Belcour 2018;
Jakob et al. 2014; Weidlich and Wilkie 2007; Weier and Bel-
cour 2020]. These papers focus on the light transport through
vertically layered materials whereas we focus on the defi-
nition of layered materials and their properties. We further
separate vertical layering into the following two categories:
– Weak vertical layering (see Figure 2c) – supports multiple
vertically-stacked material layers, but rays traced through
the layers do to necessarily support refraction, multiple-
scattering between the layers, or physically-accurate ma-
terial responses. Such a layering system may for example
only tint the appearance of a material based on layers.

– Strong vertical layering (see Figure 2b) – supports re-
fraction, multiple scattering between layers, and poten-
tially other physical concepts such as anisotropy and layer
roughness. This type of vertical layering can be considered
physically-based.

3 MATERIAL BINDING PREVIOUS WORK
We review previous work on material binding mechanisms, since
any suitably open programmable shading system is implicitly capa-
ble of supporting horizontal or vertical layering via node connec-
tions and material code if desired. Please note that this section is

quite short, because we were unable to find many previous exam-
ples of innovation over the standard one-to-one material binding.

It is relevant to note that encapsulating layering mechanisms
in one-to-one binding systems forces the complexity to be within
each material itself, or hidden within scene-description data such
as attributes or primitive variables. This obfuscated complexity can
be difficult to manage for users. All systems we have worked with
in the past have suffered from this same issue.

3.1 Co-shaders
To the authors’ knowledge, released around 2007 in Renderman 13.5
[Pixar 2022a], co-shaders were the first introduction of multiple-
material bindings to a single render primitive also supporting hier-
archical assignment. Despite deprecation in newer PRMan versions,
the co-shader mechanism is a powerful concept, allowing the user
to partitionmaterial functionality into small, well-defined co-shader
modules, and refer to them freely from an underlyingmaterial which
orchestrates some chosen aggregate functionality. Allowing these
assignments to be hierarchical further aids the simplicity of the
scene description by allowing users to "push" common functionality
within the scene "up" the hierarchy, effectively de-duplicating what
would otherwise require redundant per-primitive assignments.

ASH’s binding mechanism could be partially mimicked using
co-shaders, which we demonstrate in the example rib-file in List-
ing 2 in the Appendix. RIB and RSL compliant renderers which
could replicate the given example include (non-exhaustive list):
3Delight [Illumination Research Pte Ltd. 2021], AIR [Iverson 2014],
Aqsis [The Aqsis Team 2015], and Pixie [Arikan 2005]. Rendering
this example would produce the co-shader ordering listed in the
comments of Listing 2 for each primitive. A strict ordering, let’s
say alphanumeric for the sake of argument, would however re-
quire either runtime sorting, which adds unacceptable performance
overhead to shader evaluation, or using Scene Filters.

3.2 Scene Filters
Scene description filters are user-programmable modules that take
as input a section of scene, and return it with additions, modifica-
tions, or deletions. As such, they provide numerous possibilities
for implementing material binding mechanisms. An immediately-
recognizable scene description filter is the PRMan Ri Filter which
allows for modifying the scene through a C or Python interface.
Sorting slots through a scene filter would be possible in a custom
implementation of a scene filter but adds restrictions regarding
sharing of scenes across different studios and renderers.

We solve the problem of slot ordering without introducing an ad-
ditional render time overhead by sorting the slots during the scene
traversal phase of the renderer loading a scene. Making this mech-
anism a first class concept within open-source scene description
formats is desirable for cross-renderer compatibility.

4 MATERIAL LAYERING PREVIOUS WORK
In comparison to the limited existing work on material binding,
material layering has received quite a lot of work and attention from
the graphics research community. Here we review the approaches
to material layering used by existing commercial and open source
renderers.

https://renderman.pixar.com/resources/RenderMan_20/rifilters.html
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• Horizontal Layering: As complex materials can usually
be defined by combining hard-coded base materials in a
graph structure, there are often mixing nodes to describe
horizontal layering of materials. Based on blending weights,
the materials that are connected to the inputs of the mixing
node are combined to form the mixing node’s output.
Mixing nodes are part of all major renderers and material
description standards with public documentation, such as
Arnold [Autodesk 2022], Cycles [Blender Documentation
Team 2022], Katana [Pixar 2022b], Mantra [SideFX 2022],
MaterialX [Harrysson et al. 2021], MDL [NVIDIA Corpora-
tion 2019], Mitsuba [Jakob 2014], PBRT [Pharr et al. 2022],
and PRMan [Pixar 2022b]. Regarding USD, USDShade [Pixar
Animation Studios 2017, 2022] itself defines neither verti-
cal or horizontal layering but leaves these implementation
choices up to the user. There have been usd-interest forum
discussions about layered materials 123 but none are yet
concretely implemented by USDShade.
Providing horizontal layering via mixing nodes implies a
material must encode layering via node connections. This
means that modifications to the layering cannot be managed
freely at the scene level. In most cases this can be mitigated
by careful interface parameterization, but changing a layer
from one node type to another, cannot be handled without
manually rewiring the graph itself.
• Vertical Layering: Some renderers allow for vertical layer-
ing in predefined materials, e.g. in specific materials such
as the car paint material in Katana, or the thin-film material
node in Arnold which can be applied to other materials. Such
predefined nodes for vertical layering are also available in
Cycles, Mantra, Mitsuba, PBRT, and PRMan, as well as in
ASH. MDL and MaterialX allow for combining materials by
vertical layering through mixing nodes. This allows for great
flexibility in defining optical layered materials. While MDL
currently supports weak vertical layering, MaterialX appears
to support both weak and strong vertical layering.

Table 1 shows the material layering capabilities of different ren-
derers. The (W) naming refers to weak vertical layering, all other
vertical layering is assumed to be strong. Glimpse, with ASH ma-
terial binding and layering is the only system we know of that
currently supports horizontal material layering at the binding level.

5 ASH
At Animal Logic we developed ASH as the shading system in-
tegrated into our proprietary production path-tracer Glimpse. It
provides an abstraction layer between the scene description and
the renderer for material assignments/binding and material graphs.
ASH material graphs are processed and turned into OSL code for
runtime evaluation. ASH consists of three major components:
• Hierarchical multiple-material per primitive scene composi-
tion binding.
• A C++API for defining shading graphs and connections with
special features, based on an OSL runtime JIT.

1https://groups.google.com/g/usd-interest/c/EGJMkTbTnDE/m/5JizUHQuAwAJ
2https://groups.google.com/g/usd-interest/c/_hEPO2Z3nzI/m/EzlaiWLFAwAJ
3https://groups.google.com/g/usd-interest/c/-pzQUZQP6p0/m/HKGnxQ5UBwAJ

Table 1: Comparison of Material Layering.

Renderer Horizontal Layering Vertical Layering

Arnold Mixing Shader Node Explicit Nodes
Cycles Mixing Shader Node Explicit Nodes
Katana Mixing Shader Node Explicit Nodes
Mantra Mixing Shader Node Explicit Nodes
MaterialX Mixing Shader Node Mixing Shader Node
MDL Mixing Shader Node Mixing Shader Node (W)
Mitsuba Mixing Shader Node Explicit Nodes
Octane Mixing Shader Node Mixing Shader Node
PBRT v3 Mixing Shader Node Explicit Nodes
PBRT v4 Mixing Shader Node Explicit Nodes
RenderMan Mixing Shader Node Explicit Nodes
UsdShade Implementation Defined Implementation Defined
VRay Mixing Shader Node Mixing Shader Node
Glimpse/ASH Binding Assignment Explicit Nodes

• Runtime stochastic evaluation of layering, masking, surface
shading, and displacement.

These components allow us to efficiently and effectively surface
multiple assets using shared material definitions without the need
to edit the internal node connections or content of existing material
graphs.

Traditionally complex scene modifications such as "adding dust
across the entire scene" or "changing the look of all the metal for
each primitive in a particular asset" are comparatively trivial in
ASH due to the way it has been designed. These are precisely the
type of production use-cases it was created to address.

Animal Logic has long focussed on photorealistic and physically-
based rendering. As a result, we have moved away from uber-shader
based approaches, due to the unnatural blending look obtained from
parameter blending and instead prefer correct metallic specular
responses and physical fresnel terms. As such, we require a mate-
rial layering system that supports truly physically-based blending
of parameters. We achieve this using stochastic blending, which
represents the physical property of material mixtures represented
as the probabilistic presence of multiple mixed materials. Or, in
short, in the real world a ray or photon gets reflected or refracted
by a single material at a time. Horizontal layering is therefore an
aggregate result of multiple surfaces effecting the light propagation.
We model this directly.

5.1 Overview
We first introduce the terminology and a few main ideas overarch-
ing ASH before explaining them in more detail:
• Multiple hierarchical material assignment, ASH’s fundamen-
tal binding concept, allows for all named material assign-
ments for a primitive (from now on referred to as slots) to
be combined through horizontal layering. Slots are prop-
agated hierarchically and sorted alphanumerically within
each primitive.
• Materials (or substances in ASH) are represented by a node
graph using OSL. Each substance can contain up to one
of each of the following outputs (which we call products):
surface (e.g. the BSDF), displacement, normal (for normal

https://groups.google.com/g/usd-interest/c/EGJMkTbTnDE/m/5JizUHQuAwAJ
https://groups.google.com/g/usd-interest/c/_hEPO2Z3nzI/m/EzlaiWLFAwAJ
https://groups.google.com/g/usd-interest/c/-pzQUZQP6p0/m/HKGnxQ5UBwAJ
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mapping) and mask (for the ability to set the substance’s
transparency).
• Overriding of slots is implemented through the specific nam-
ing convention X::Y, whichmeans that we connect all match-
ing output attributes of Y to the corresponding input at-
tributes of X with the same name. This allows for overriding
functionality through automatic rewiring of the substance
graph by relying on naming conventions.
• Substance slots defined at a higher level in the hierarchy
can be replaced at a lower level by re-defining the same slot.
Similarly, assigning an empty slot (no associated substance
graph) removes any previous assignment.
• Displacement and bump mapping are evaluated and com-
bined from the bottom to the top layer. Normal mapping for
each slot is evaluated directly following the displacement
and bump mapping.

5.2 Hierarchical Assignment
Each substance is assigned to a named slot as part of the material
assignment process. Assignments can bemade to any primitive path
in a scene, and all are propagated hierarchically (i.e. assignment
even to groups and transforms is supported where appropriate).
When a renderable primitive is found in the scene, its final singular
material is composed as the union of all hierarchical substance
assignments at this point from all ancestors.

Slot names are sorted to define the layer ordering. In our imple-
mentation this sorting is defined alphanumerically. Theoretically
other sorting methods could be used, but alphanumeric sorting has
worked well for us.

The concept of combining multiple substances via slot assign-
ments is where the utility of this system is clearest. Scene subsec-
tions which contain visually similar renderable elements can all be
surfaced with a single assignment. Further detail within each scene
subsection can be refined with assignments at deeper levels in the
form of layering or replacements.

A slot replacement occurs when a slot assignment is made to part
of the scene which has the same slot name as a previous assignment
higher up hierarchically. Replacement can also be used to deactivate
higher slot assignments, this occurs when a slot is assigned an
empty substance. A new layer occurs when a slot assignment is
made anywhere above the current renderable primitive with a new
unique slot name.

Listing 1 demonstrates these hierarchical assignment concepts
using a simplified pseudo-USD scene.

The resulting composed materials for each object are:
• ObjectA: SubstanceA
• ObjectB: SubstanceB on top of SubstanceA
• ObjectC: SubstanceB on top of SubstanceC
• ObjectD: SubstanceB

5.3 Stochastic Evaluation
To reduce the cost of evaluating multiple substance layers, Glimpse
uses stochastic evaluation based on mask product outputs. For
each integrator sample, mask products for all slots are evaluated to
produce per-layer opacities. These opacities are considered from
top-to-bottom to compute per-layer weights. If the sum of these

Listing 1: "Pseudo-USD Hierarchical Assignment Example."
1 de f " ObjectA "
2 {
3 r e l slot : 0 0 0 = < / SubstanceA>
4 de f " Ob jec tB "
5 {
6 / / a p p l i e s a new l a y e r on top o f ' 0 0 0 '
7 r e l slot : 0 1 0 = < / Subs tanceB>
8 de f " Objec tC "
9 {
10 / / r e p l a c e s the p r e v i ou s s l o t ' 0 0 0 '
11 r e l slot : 0 0 0 = < / Subs tanceC>
12 }
13 de f " ObjectD "
14 {
15 r e l slot : 0 0 0 = n u l l / / removes the p r e v i ou s s l o t ' 0 0 0 '
16 }
17 }
18 }
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Figure 3: Overrides Example. Copyright© 2022Animal Logic
Pty Ltd. All Rights Reserved.

weights is less than one, the remaining weight is considered to be
the primitive transparency.

For example, consider the case of ObjectB in the example in List-
ing 1, where SubstanceB is on top of SubstanceA. Let the opacities
of SubstanceA and SubstanceB bemA andmB , respectively. Then
the weights will be:

wB =mB , (1)
wA =mA · (1 −mB ), (2)
wT = 1 −wA −wB (3)

wherewT is the implicit weight of the object being fully transpar-
ent. During evaluation of materials, one of the substances or the
transparent case will be selected stochastically, proportional to the
weightswA,wB , andwT .

5.4 Overrides
Overrides are substance graphs that provide output attributes to
be consumed by the substances they are overriding. You can think
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Figure 4: ASH Graph Houdini Integration. Copyright © 2022
Animal Logic Pty Ltd. All Rights Reserved.

of them as providing patterns with output parameters that over-
ride existing input parameters for another graph. We illustrate an
override example in Figure 3. Say a substance is assigned to layer
slot "010". Assume this substance contains the input parameters
"x", "y" and "z". These parameters can be set directly as constant
values, or an override with output parameters "x", "y" and "z" could
be assigned to slot override "010::000". When the final material
layer "010" is composed by ASH, all overrides assigned to "010"
(in this example, "010::000") attempt to connect their outputs to
any matching inputs of the "010" substance. The connections are
automatically established if matching parameter names are found.
The highest level override output parameter will "win" if multiple
overrides provide the same named output parameter. At a basic
level this allows substance inputs to be defined in one process, then
driven by overrides containing complex graphs with textures, pro-
cedurals or some other complicated process in another. Naming
conventions are established to ensure that the override process
behaves as expected.

5.5 Custom Channels - AOVs
Custom Arbitrary Output Variables (AOVs) can be defined in ASH
by simply placing a customChannel node within a substance graph
and either setting it with a constant input value, or feeding it with
a computed value. This node is detected as a custom channel and
exposed to Glimpse automatically. Custom channel nodes exist for
each output data type supported byGlimpse: customChannelColor,
customChannelInteger, etc. Substances can compute an arbitrary
number of custom output channels, and substance overrides can
add them to existing substances at any time. One special feature
of custom channel nodes is that even though they do not provide
an output connection, they are still retained by the OSL shader
compiler. Typically nodes that do not provide connected outputs
are truncated from the graph.

(a) (b) (c) (d)

Figure 5: Houdini ASH Slot Assignment Icons. Slot assigned:
(a). Slot inherited: (b). Override assigned: (c). Override inher-
ited: (d). Copyright © 2022 Animal Logic Pty Ltd. All Rights
Reserved.

5.6 Houdini User Interface
Surfacing and look development of USD stages is performed in
the SideFX Houdini LOPs UI. Standard Houdini material library
nodes provide the containers that hold USDShadematerials. Subnets
within these material library nodes contain the shaders themselves.
The ash substance graphs are edited within the VOP context. ASH
automatically generates VOP nodes from the internal Glimpse node
definitions, and these node types are filtered within the Glimpse
ASH VOP UI, in order to only show valid substance nodes. The
interface for a typical ASH graph is shown in: Figure 4. Note that
all the products provided by this graph are connected to a Houdini
VOP suboutput node to collect them. In this particular example,
the surface product is glimpse_glossy1, the displacement product
is glimpse_displacement1, there is no normal product and the
mask product is glimpse_mask1.

Hierarchical slot assignments are handled by a dedicated UI that
provides a novel visual reference to help our artists understand
their application within a scene. The hierarchy of the USD stage is
shown, along with icons at each primitive to represent the aggre-
gation of slots at that point. The icons in Figure 5 provide a visual
representation of the hierarchical slot assignments to the primitives
in the scene. The icons represent a new slot assignment (Figure 5a),
an inherited slot assignment (Figure 5b), a new override assignment
(Figure 5c), and an inherited override assignment (Figure 5d).

A production example of the UI is shown in Figure 6. There are
3 columns for the Scene Graph Path, the Slot name, and theMaterial
Prim Path for the scene path to the substance or override assigned
at that point. Slots are always shown, at each primitive, sorted from
the base layer at the top, to the top layer at the bottom. To figure
out the location of a slot assignment or override, the user just needs
to look at which icon is bright. A bright icon is an application point,
and a dark icon indicates inheritance from a parent level. Reading
a row at the primitive level from left to right, you can also see the
slot and override assignments from the lowest to the highest layer.
This means that even when the hierarchy is collapsed, you can
still tell, at a glance, what the substance assignments are. It is then
possible to further explore the detail by expanding the hierarchy
and looking at which substance is assigned to which slot. We have
used multiple variations of this general UI across all of our Digital
Content Creation (DCC) tools and they work well to represent the
ASH hierarchical assignments at a glance.
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Figure 6: Houdini Slot Assignment UI. Copyright © 2022 An-
imal Logic Pty Ltd. All Rights Reserved.

Figure 7: Production Example Overview: viewport preview
and final render. Copyright © 2022 Animal Logic Pty Ltd. All
Rights Reserved.

Figure 8: Default Substance. When no slot assignments are
made in the DCC, assets render with a default white diffuse.
Copyright© 2022Animal Logic Pty Ltd. All Rights Reserved.

6 PRODUCTION EXAMPLE
We now show how the concepts we have introduced can be used
when surfacing a production asset. We choose an oscilloscope as-
set from the Animal Logic ALab. The Houdini viewport view is
compared to the final Glimpse render in Figure 7 as a starting point.

6.1 Default Substance
In a fresh scene with no assignments (Figure 8) all geometry renders
with a default white diffuse product.

6.2 Hierarchical Layering
Hierarchical layering (Figure 9) is used to set up the base substance
layer slot of the asset. At the root of the asset, generic01 (a typical
glossy shader) is applied as a base layer at slot "000". This produces
a render with a darker grey tint, since our default glossy product is
a mid-grey. Note also that the assignment UI shows the inherited
assignments down the scene hierarchy.

6.3 Substance Overrides
Substance input values can be overridden by setting values on sub-
stance overrides. In Figure 10, generic01_override01 provides
colour and roughness maps. A distinct advantage to using ASH over-
rides is that the base library substance generic01 can be updated
at any time, and the override will remain the same. This allows for

https://animallogic.com/usd-alab/
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Figure 9: Hierarchical Layering. When a slot is assigned at
the root of an asset, in this case a glossy substance, it is hier-
archically applied to all children. Copyright © 2022 Animal
Logic Pty Ltd. All Rights Reserved.

a division of work between the team creating the base substances,
and the team driving their input values. They can work in parallel,
since the substance itself can be partitioned into these two distinct
pieces. Working within a single substance graph would not allow
for such a clear separation or ability to be able to parallelize the
work.

A second metal substance metal_stainless01 and substance
override metal_stainless01_override are added lower in the
hierarchy in Figure 11 and apply only to the child primitives. In
this case note the metal elements behind the knobs are changed by
these overrides compared to Figure 10.

6.4 Hierarchical Replacement
For primitives which require a different substance to generic_01,
a substance can be assigned to slot "000" to replace the orig-
inal generic01. This is shown in Figure 12 as the oscilloscope
case changing look from Figure 11. It now uses a metal product
metal_stainless01 rather than a glossy product.

Figure 10: Substance Overrides. A substance override as-
signed at the asset root provides the basic color and rough-
ness map pattern to be consumed by the previously applied
glossy substance. Copyright © 2022 Animal Logic Pty Ltd.
All Rights Reserved.

6.5 Override Sharing
Because overrides are substance graphs themselves, they can be
re-used and assigned to multiple slots on multiple primitives. This
makes it simple to quickly change the colour of many primitives at
the same time. This is seen in Figure 13 as the knobs changing to a
red colour. The override plastic_opaque01_red overrides only the
red colour, but the underlying substance itself remains unchanged.

Dirt and dust substances can be layered on top of base layers and
have built-inmasking so they automatically only appear in occluded
areas or on top of surfaces. This is visible in Figure 14 as dirt,
wear and tear on the various surfaces of the oscilloscope compared
to Figure 13 via the dirt01 substance and dirt01_override01
override.

6.6 Override Layering
Because overrides are also assigned with sorted slots, they can be
layered just like substances. For example, in Figure 15 the inherited
dirt colour was changed at a different point in the hierarchy while
retaining the original dirt mask.

The slot arrangement for this is:

(1) "050" - dirt01 (inherited)
(2) "050::010" - dirt01_override (inherited)
(3) "050::020’ - dirt01_casing_override (object specific)
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Figure 11: Substance Overrides. A newmetal substance (with
acompanying override) is assigned to a higher slot lower in
the hierarchy, this applies only to the metal elements be-
hind the knobs. Copyright © 2022 Animal Logic Pty Ltd. All
Rights Reserved.

This is visible in Figure 15 as a lighter colour for the dirt on the
oscilloscope outer case compared to Figure 14.

6.7 Slot Removal
Slot assignments can be removed by assigning empty slots. For ex-
ample to remove the inherited dirt01 substance, we can assign an
empty substance to slot "050" on the frontPanel_M_geo primitive.
This is shown in Figure 16 as the dirt substance disappearing on
the front panel, whilst being retained elsewhere.

Figure 12: Hierarchical Replacement. The existing glossy
substance is replaced with a metal substance on the outer
shell by assigning the metal to the same slot name as the
glossy, lower in the hierarchy. Copyright © 2022 Animal
Logic Pty Ltd. All Rights Reserved.

6.8 Adding Custom AOVs in Overrides
AOVs can also be added using slot overrides. As mentioned in sub-
section 1.2, substance overrides are just standard substance graphs
containing nodes that are added to the substance they are targeting,
so any valid individual nodes (like AOV nodes) will be added to the
main substance; acting as if they had always been present within
it. This allows us to add new functionality to an existing shader
without ever having to rewire it or change any code. In Figure 17, a
custom AOV (glimpse_customChannelColor1) has been added to
an override to output an AOV for the presence of the dirt substance.
Due to the automatic layering of substances, the AOV merely needs
to output a value of 1. Glimpse will automatically stochastically
sample it based on the probability of sampling the slot layer it is in.
The result is an AOV that matches the layering and masking result
of the substance containing that AOV. We have found this mecha-
nism extremely useful for simply and quickly generating extra data
for compositing passes with minimal effect on production, since
no library assets need to be changed or republished.
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Figure 13: Override Sharing. A single override can be as-
signed to many different elements to easily provide pat-
terns (to the red knobs) without changing the substance type
(which remains glossy). Copyright © 2022 Animal Logic Pty
Ltd. All Rights Reserved.

6.9 Decals and Projections
Decals can be implemented using additional substances with masks
added as extra slot layers. In Figure 18, the sticker on the side has
been added as an extra substance slot layer.

The decal sticker is a coated paper material with a projected
mask override. It is layered above the base slot but below the dirt,
paint, and dust.

6.10 Layered Displacement/Bump/Normal
Substance displacement/bump/normal products can be set to add,
mix or none mode. The add and mix modes are limited in extent
by the substance mask. The difference is that in mix mode the

Figure 14: Override Sharing. A dirt layer (with acompanying
override) is layered on top of all elements in the asset. Copy-
right © 2022 Animal Logic Pty Ltd. All Rights Reserved.

displacement is additionally blended from top to bottom in the
same way as surface product substance layering (i.e. higher slots
mask the lower slots). The none mode ignores all masking and
layering and applies everywhere. The add and mix options are
shown in Figure 19 as the sticker being either masked by or on top
of the underlying material respectively.

7 LIMITATIONS AND FUTUREWORK
Having proven itself over many films, ASH has become a mature
staple of Animal Logic’s workflows. We now incorporated layered
materials into every asset we create, and the flexibility of having
individually adjustable layers and overrides provides us with more
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Figure 15: Override Layering. The pattern of the dirt layer on
the outer metal is reduced by applying a substance override
lower in the hierarchy. Copyright © 2022 Animal Logic Pty
Ltd. All Rights Reserved.

creative tools, and faster turn-around times in cases where last-
minute changes need to be made. Despite this success, there are
still many areas the Glimpse team have already identified for future
extension/improvement. We also like to keep pushing our tools to
deliver results for ever-increasing complexity and realism.

7.1 Layering Depth
The Glimpse ASH implementation currently imposes a limit of 8
substance slots/layers per primitive. This limitation is relatively
arbitrary, and following the descriptions in this paper one could
choose to support any number of layers.

Figure 16: Slot Removal. Dirt is removed from the front
panel by assigning an empty substance to the the previous
dirt slot name, lower in the hierarchy. Copyright © 2022 An-
imal Logic Pty Ltd. All Rights Reserved.

7.2 Substance Product Customization
We do not support node graph connection-based horizontal mixing
and interpolation of surface products like other systems such as
MaterialX, Arnold and PRMan. We have found our layering system
provides an adequate alternative (with clear advantages in terms of
editing materials), but a case could be made to combine these two
techniques together for an even more expressive system. Further
discussions with other vendors in this area is something we intend
to actively pursue.

7.3 Vertical Layering
Vertical layering is currently supported in ASH via hard-coded sur-
face products that incorporate the vertical layers directly into their
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Figure 17: Adding Custom AOVs in Overrides. Substances
and overrides can provide customAOVs, in this case the dirt
substance provides a matte for later use. Copyright © 2022
Animal Logic Pty Ltd. All Rights Reserved.

Figure 18: Decals andProjections. Anewdecal substance and
override are assigned to a slot in-between the basemetal and
the top dirt layers. Copyright © 2022 Animal Logic Pty Ltd.
All Rights Reserved.

Figure 19: Layered Displacement - Add and Mix modes. Dis-
placement, bump, andnormalmapping products can option-
ally blend on top of lower layers. In this case the decal dis-
placement can optionally accumulate on top of the displace-
ment on the lower metal layer. Copyright © 2022 Animal
Logic Pty Ltd. All Rights Reserved.

definitions. These vertical layers cannot be inherently edited out-
side of the exposed parameters on the surface products themselves.
So far this hasn’t shown to be particularly problematic, but some
users desire more control and from a code-maintenance perspective,
automated handling of vertical layers is appealing and expected to
reduce code size and complexity.

We would like to incorporate recent work related to vertical
layering, specifically: [Belcour 2018], [Weier and Belcour 2020],
[de Dinechin and Belcour 2022], [Guo et al. 2018] and [Randrianan-
drasana et al. 2021]. An extension to the slot naming could support
vertical layering for substances. Given that "000" is currently an
example of a slot name for a horizontal layer, adding a vertical layer
to that slot could be achieved by specifying "000|010". This would
add the vertical substance layer specified in slot "000|010" to slot
"000". If the override naming convention still applied, it would
be possible to specify an override for "000" using "000::010" as
before, but additionally the user could add an override to a ver-
tical layer with "000|010::010". The obvious issue here would
be user-confusion with these naming conventions, but this could
be mitigated by an appropriate UI to hide such complexities. One
advantage such a system would provide over graph-based vertical
layering systems, such as MaterialX, would be that the materials
could be modified in a non-destructive manner, i.e. vertical layers
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could be added or removed entirely at the binding level. Addition-
ally, vertical layers could then be re-used across multiple assets,
and if sorted in the same way that horizontal layers currently are,
their level within the vertical stack could be accurately and reliably
controlled.

7.4 Friendly Slot Naming
The alphanumerical naming and sorting used by ASH was chosen
to provide a reasonable compromise to the problem of how to sort
data consisting of potentially complicated layer names. As a result,
at Animal Logic, we established a 3-digit alphanumerical naming
convention:

The main slots are named "010", "020", "030", ... , "0X0". This
leaves room for "000" to be placed at "the bottom" of the layer
stack at any time, and the stride of 10 allows for further modifica-
tions to the stack order such as "015" between "010" and "020"
etc. We decided to avoid non-numeric characters for simplicity and
the sanity of our artists!

When presenting this to the OSL committee a few quite rightly
pointed out that this is reminiscent of goto statement labels in the
BASIC language. It is, also, upon first viewing, quite different to
existing systems. We recognize this, and hence we’d like to engage
in further discussion with the VFX community about what ideas
they might have to improve or simplify the naming schemes and
strategies we have adopted so far.

7.5 Hierarchy vs Collections
ASH hierarchical assignment relies on having a reasonable scene
hierarchy as scaffolding for the slot binding to act upon. Some fa-
cilities might prefer to work with flatter object hierarchies. In these
cases, extending hierarchical assignment to work with collection-
based assignment would make a lot of sense. This would allow
a "virtual" hierarchy to be formed from collections, and used to
assign slots to multiple objects in a more expressive fashion. We
have not yet embraced such an idea in Glimpse, but intend to raise
this as a discussion point with other studios to further improve the
flexibility of slot-based assignment.

8 CONCLUSION
Material layering and slot binding have allowed Animal Logic to
express surfaces in a way that has improved the photorealism and
efficiency of our work. The ability to decouple different parts of the
pipeline such as base materials and pattern generation and work
on them in parallel has improved our productivity compared to
our work before ASH. Building assets with hierarchies that encode
their structure has also helped us to further embrace the power
of hierarchical slot binding, and assisted in the simplicity of our
material assignment.

Moving away from one-to-one binding limitations has allowed
us to simplify large-scale surfacing modifications in situations that
would have previously required republishing thousands of material
assets. Avoiding the industry trend of uber-shaders has further
provided Animal Logic with a visual style and look more grounded
in real-world physics, showcased in Figure 20, free from the some-
times unnatural artifacts of purely blending material parameters to

Figure 20: Animal Logic’s USD ALab demonstrates the re-
sults of layered shading using ASH within a complex envi-
ronment. Copyright © 2022 Animal Logic Pty Ltd. All Rights
Reserved.

represent layering. We can quite easily combine true metallic spec-
ular responses with glossy dielectric responses without the need
for non-physical parameters such as "metalness", whilst retaining
the power of Photoshop-style alpha layering.

Here is a quote from a user and advocate of Glimpse and ASH
in production:

Animal Logic ASH shading tools have allowed artists to quickly
layer materials in complex hierarchies without pre-establishing
the final shader composition. Glimpse layering mechanisms
have allowed us to easily layer multiple weathering effects on
complex assemblies or large sets without diving into the
individual asset components. This approach, combined with
our material referencing scheme, has contributed to a
noticeable reduction in turnaround time in the look
development department when dealing with complex assets.

Jean-Pascal leBlanc - Global Asset Supervisor

We believe that presenting our work, and actively discussing it as
we already have with the OSL, MaterialX and Pixar USD Technical
Steering Committees will lead to improvements and modifications
to our ideas that the entire industry may be able to benefit from.
This excites and motivates us to continue improving and refining
this work. Our long term goal is for open source scene descrip-
tion formats such as USD to adopt multiple-material per primitive
assignments with hierarchical propagation and layer sorting to sup-
port the basis upon which binding-based material layering could
be implemented. We would love to further extend and refine these
ideas to include true vertical-layering support, and clear standards
for slot naming, slot sorting and production usage.

If you have any questions, suggestions, or feedback we would
love to hear from you and would encourage you to contact us to
discuss any aspect of this work.
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A PRMAN RIB SLOT BINDING EXAMPLE
USING CO-SHADERS

Listing 2: "RIB Slot Binding Example."
1 D i sp l ay " t e s t " " f r amebu f f e r " " rgb "
2 P r o j e c t i o n " p e r s p e c t i v e " " fov " 40
3 Format 320 240 1
4
5 T r a n s l a t e 0 0 3
6 Ro t a t e 0 1 0 0
7 Ro t a t e 90 0 1 0
8 S c a l e 1 1 −1
9
10 WorldBegin
11 Shader " t e s t s l o t " " 010 "
12 Shader " t e s t s l o t " " 020 "
13 Su r f a c e " t e s t b a s e "
14 A t t r i b u t e B e g i n
15 Trans formBegin
16 # r e s u l t i n g o rde r : 0 10 , 0 20 , 000
17 # ASH o rd e r i n g would be : 0 00 , 0 10 , 020
18 Shader " t e s t s l o t " " 000 "
19 T r a n s l a t e 0 0 −0 .5
20 Sphere 0 . 1 5 −0 .15 0 . 1 5 360
21 TransformEnd
22 A t t r i b u t eEnd
23 A t t r i b u t e B e g i n
24 Trans formBegin
25 # r e s u l t i n g o rde r : 0 10 , 0 20 , 001 o r d e r i n g
26 # ASH o rd e r i n g would be : 0 01 , 0 10 , 020
27 Shader " t e s t s l o t " " 001 "
28 T r a n s l a t e 0 0 0 . 5
29 Sphere 0 . 1 5 −0 .15 0 . 1 5 360
30 TransformEnd
31 A t t r i b u t eEnd
32 A t t r i b u t e B e g i n
33 Trans formBegin
34 # r e s u l t i n g o rde r : 0 10 , 0 20 , 011 o r d e r i n g
35 # ASH o rd e r i n g would be : 0 10 , 0 11 , 020
36 Shader " t e s t s l o t " " 011 "
37 T r a n s l a t e 0 −0 .5 0
38 Sphere 0 . 1 5 −0 .15 0 . 1 5 360
39 TransformEnd
40 A t t r i b u t eEnd
41 A t t r i b u t e B e g i n
42 Trans formBegin
43 # r e s u l t i n g o rde r : 0 10 , 0 20 , 021 o r d e r i n g
44 # ASH o rd e r i n g would be : 0 10 , 0 20 , 021
45 Shader " t e s t s l o t " " 021 "
46 T r a n s l a t e 0 0 . 5 0
47 Sphere 0 . 1 5 −0 .15 0 . 1 5 360
48 TransformEnd
49 A t t r i b u t eEnd
50 WorldEnd

B MATERIAL SLOT BINDING API
Native USD material bindings are expressed by UsdRelationships.
They are authored using Pixar’s schema: UsdShadeMaterialBindin-
gAPI. A direct material binding is specified in Listing 3.
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Listing 3: "USD direct binding."
1 de f Xform " As se t "
2 {
3 r e l material : binding = < / Du s tMa t e r i a l >
4 }

The main limitation of Pixar’s binding is that it does not support
the binding of multiple materials at the same prim location (for a
given material purpose). This design decision is also reflected in the
way bound materials are resolved by Hydra (which uses the Com-
puteBoundMaterial() function of UsdShadeMaterialBindingAPI),
returning a single resolved material per geometry primitive (for a
given material purpose).

As Hydra support is not a requirement within our pipeline, we
decided to use a custom encoding for Glimpse ASH bindings using
our own API schema.

B.1 Slot bindings in USD
For our own schema, we decided to stay as close as possible to the
native USD bindings. Slot bindings are represented by UsdRelation-
ships, where the slot name is encoded in the name of the relation-
ship, as shown in Listing 4.

Listing 4: "USD Slot Binding."
1 de f " b r i c k _ 6 1 4 1_9 1 "
2 {
3 r e l material : slotBinding : _000 = < / L e g o P l a s t i c >
4 r e l material : slotBinding : _050 = < / Du s tMa t e r i a l >
5 }

All material relationships representing a slot binding begin with
the material:slotBinding namespace and the rest of the rela-
tionship’s name encodes the slot name. The devil is in the details,
as USD naming conventions are quite strict:
• The names of any UsdProperty (including UsdRelationship)
are made of a single identifier or a list of identifiers separated
by colons.
• An identifier is considered valid if it follows the USD iden-
tifier convention; that is, it must not be empty, must start
with a letter or underscore, and may contain only letters,
underscores, or numerals.

Therefore, we encode Glimpse slot names as valid USD identifiers
using the following steps:

For example to encode a slot override "050::000":
(1) split the string with ":" as the separator:

["050","","000"]
(2) transform each element into a valid USD identifier:

["_050","_","_000"]
(3) join each element with ":" as the separator, giving:

"_050:_:_000"

This means that a Glimpse binding on slot "050::000" to a material
called "PlasticOverride" would be encoded as shown in Listing 5.

Listing 5: "USD Slot Binding with Override."
1 r e l material : slotBinding : _050 : _ : _000 = < / P l a s t i c O v e r r i d e >

B.2 Custom Schema Usage Example
At the end of the day, a user just wants an easy way to author
and read slot bindings inside of a USD scene. MaterialSlotBindin-
gAPI handles the slot encoding, allowing users to deal only with
canonical slot name:

Listing 6: "Slot Binding Made Easy."
1 prim = stage . DefinePrim ( ' / S e t ' , 'Xform ' )
2 material = UsdShade . Material . Define ( stage , ' / S e t / Mat ' )
3
4 # Crea t e an i n s t a n c e o f the schema a t t a c h e d to your prim
5 bindingAPI = schemas . MaterialSlotBindingAPI ( prim )
6
7 # Crea t e a b ind ing between ' prim ' and ' ma t e r i a l ' on s l o t ' 0 0 0 '
8 bindingAPI . Bind ( material , ' 000 ' ) # c r e a t e r e l a t i o n s h i p named '←↩

ma t e r i a l : s l o t B i n d i n g : _000 '
9
10 # Get s l o t b i n d i ng s exp r e s s e d on ' prim '
11 bindingAPI . GetBindings ( ) [ 0 ] . getSlot ( ) # r e t u r n ' 0 0 0 '
12 bindingAPI . GetBindings ( ) [ 0 ] . GetMaterialPath ( ) # r e t u r n ' / S e t / Mat←↩

'
13 bindingAPI . GetBindings ( ) [ 0 ] . GetMaterial ( ) # r e t u r n ←↩

UsdShade rMa t e r i a l ' ma t e r i a l '

B.3 Blocking Relationship
It is possible to remove a slot binding for a given a primitive. This
affects the binding resolution on this primitive (and all descendants)
by forcing all inherited bindings (on this slot) to be ignored – unless
redefined.

MaterialSlotBindingAPI encodes these bindings using Attribute
Block. To obtain such a result, bind an invalid UsdMaterial:

Listing 7: "Blocking Relationship."
1 bindingAPI = schemas . MaterialSlotBindingAPI ( prim )
2 bindingAPI . Bind ( UsdShade . Material ( ) , ' 000 ' )

This will generate the following relationship as shown in Listing 8.

Listing 8: "USD Blocked Slot Binding."
1 r e l material : slotBinding : _000 = None

https://graphics.pixar.com/usd/docs/USD-Glossary.html#USDGlossary-AttributeBlock
https://graphics.pixar.com/usd/docs/USD-Glossary.html#USDGlossary-AttributeBlock
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