
Editorial Pipeline Conversion: Animal Logic’s Transition to
OpenTimelineIO

Tim Lehr
Animal Logic

Vancouver, BC, Canada
tim.lehr@animallogic.ca

Barish Balachandran
Animal Logic

Sydney, NSW, Australia
barishb@al.com.au

Oliver Dunn
Animal Logic

Vancouver, BC, Canada
oliver.dunn@animallogic.ca

Nathan Lacey
Animal Logic

Sydney, NSW, Australia
nathan.lacey@al.com.au

Figure 1: Editron user interface. Built using Electron.js and OpenTimelineIO.

ABSTRACT
We introduce Animal Logic’s editorial pipeline refactor from a rigid
and overly complex in-house solution, towards a more modern,
flexible approach, based on the open source technologies Open-
TimelineIO and Electron.js. This upgraded design greatly increases
flexibility over the previous effort, enabling cross-platform user
adoption and further decoupling our tools from the editorial soft-
ware of choice. The new pipeline is now rolled out onto our most
recent productions and we are already starting to see the benefits
of its extensibility and ease of troubleshooting.

CCS CONCEPTS
• Computing methodologies → Computer graphics; Edito-
rial.

KEYWORDS
Editorial OpenTimelineIO Electron Pipeline

ACM Reference Format:
Tim Lehr, Barish Balachandran, Oliver Dunn, and Nathan Lacey. 2022. Edi-
torial Pipeline Conversion: Animal Logic’s Transition to OpenTimelineIO.
In Special Interest Group on Computer Graphics and Interactive Techniques
Conference Talks (SIGGRAPH ’22 Talks), August 07-11, 2022. ACM, New York,
NY, USA, 2 pages. https://doi.org/10.1145/3532836.3536278

1 INTRODUCTION
While Animal Logic’s pipeline has gone through several major refac-
tors in recent years, namely its conversion over to a fully Pixar™

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
SIGGRAPH ’22 Talks, August 07-11, 2022, Vancouver, BC, Canada
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9371-3/22/08.
https://doi.org/10.1145/3532836.3536278

Universal Scene Description (USD) based solution, due to several lim-
iting factors, the editorial pipeline had not. With the advancements
ofOpenTimelineIO (OTIO, https://github.com/PixarAnimationStudios/
OpenTimelineIO), Animal Logic’s growth, and with it a pressing
need to upgrade our code base to Python 3, it was time for a redesign
of our editorial tools.

There were two main requirements to be considered with this
refactor: The user interface for editorial needed to be cross-platform;
developers and TDs would be using the tools on Linux, while the
editorial department would be running either Windows or Mac.
The second main requirement was to reduce the large amount of
in-house custom Python code and remove dependencies on any
particular editorial file format, allowing us to greatly improve our
agility and flexibility in this area going forward.

2 USER INTERFACE
After investigating multiple frameworks and deployment technolo-
gies, the decision made was to develop a native application. A
modern web frontend framework (Vue.js) in combination with Elec-
tron.js was chosen for this task, giving us the ability to develop the
application once and deploy it across multiple platforms. Editron
(frontend application) takes media files from the editorial applica-
tion, converts the cut data to OTIO and compares it against previous
versions. Finally Editron packages the files and sends them to the
backend for publishing. Shown in Figure1.

2.1 Evaluation Options
There were several things to consider for the user interface. Web
vs native, in this instance native was chosen to allow for speed
of processing the large files the users would be uploading. Web
applications lack the native file-system support that was required
here. Electron vs. Qt/PySide-2, in this instance Electron was chosen
for its portability to other platforms. While Qt is known territory
for developers at Animal Logic, internal build systems were not
designed for cross platform and upgrading to Electron was the
preferred path.

https://doi.org/10.1145/3532836.3536278
https://doi.org/10.1145/3532836.3536278
https://github.com/PixarAnimationStudios/OpenTimelineIO
https://github.com/PixarAnimationStudios/OpenTimelineIO


SIGGRAPH ’22 Talks, August 07-11, 2022, Vancouver, BC, Canada O. Dunn et. al.

3 BACKEND
While Editron is responsible for the initial conversion and asset
bundling, the rest of the pipeline is executed on a Linux server
running our proprietary task graph engine. The backend task graph
includes the generation of multiple media proxies from the pub-
lished asset bundle, as well as the creation of a set of EDL- and
USD-files. An overview and the detailed node network can be seen
in Figure2.

Figure 2: High-level pipeline diagram and backend task
node graph.

3.1 OpenTimelineIO Contributions and
Enhancements

We needed to make a few additions to the OTIO AAF adapter
(Avid’s Advanced Authoring Format), primarily enhancing support
for editorial markers, which we use internally to highlight tracks
of interest and attach metadata to media clips. These changes have
since been merged back into the public OTIO repository and we are
continuing our commitment to contributing back to the community
going forward.

The introduction of frame handle schemas to accommodate the
varying requirements between different departments, was the most
significant internal addition to the OTIO ecosystem. We currently
support multiple frame handle sizes, implemented as specializations
of a new common rule schema, with departments sharing access to
a pool of configured rules for a given show.

3.2 USD Integration
With Animal Logic’s overall pipeline being built around USD, it
was imperative that this new refactor integrated seamlessly with
our current suite of client applications. In particular Animal Logic’s
shot building application Forge [Baillet et al. 2018], reads shot range
information directly from USD files. At publish time, a pipeline
step reads the sequence OTIO file and writes out our custom frame
range prim to the scene description per shot. This prim is then
read by our tools as well as by Glimpse [Heckenberg et al. 2017] at
render time to denote the range of the rendered images.

3.3 Asset Resolution
In order to be able to access published media assets across all of
our studio locations, we require all media references to conform
to our custom URI schema. This translation is made by our OTIO
media linker plugin during the initial Editron conversion from AAF
to OTIO. On subsequent access to the OTIO data, our internal asset
resolver web service translates any URI’s into localized file paths.
We take advantage of the hook API provided by OTIO to send

requests to our resolver service making it consumable by any client
at the requested studio location.

4 RESULTS AND FUTURE DIRECTION
The new refactored pipeline is now rolled out into our most recent
projects. It has allowed them to fully embrace python 3 and allowed
for TDs to easily and quickly configure the Editorial process for
each of these shows. It has also greatly improved troubleshooting
this area of the pipeline as issues arise during the heat of production.
Our previous codebase in this area comprised over 100,000 lines of
code, the main factor making it so hard to work with. Now thanks to
integrating OTIO and Electron, our internal code is down to around
5,000 lines, making it much easier to work with and maintain.

While OTIO is now integrated into Animal Logics pipeline, there
is still work to be done to further improve and streamline our
editorial tools. There are two main aspects we are looking to work
on: First, the deprecation of our USD shot range asset and our own
in-house EDL format. These assets add extra layers of complexity
with little to no benefit. Future steps will be to retire these file
formats and have all in-house tools and third party tools read OTIO
instead.

We are also continuing to follow the progress made by Autodesk
in integrating OTIO into Shotgrid™, with the potential of present-
ing rich timing information read directly from OTIO. Our future
pipeline design can be seen at a high level in Figure3.

Figure 3: Pipeline diagram depicting future directions.

ACKNOWLEDGMENTS
We would like to thank Fabrice Macagno for his mentorship, the
Animal Logic RnD Pipeline and Production Systems teams for their
help on this project, as well as the whole OTIO community for
being so welcoming and providing great technical guidance as we
worked on this project.

REFERENCES
Aloys Baillet, Eoin Murphy, Oliver Dunn, and Miguel Gao. 2018. Forging a New

Animation Pipeline with USD. In ACM SIGGRAPH 2018 Talks (Vancouver, British
Columbia, Canada) (SIGGRAPH ’18). Association for Computing Machinery, New
York, NY, USA, Article 54, 2 pages. https://doi.org/10.1145/3214745.3214779

Daniel Heckenberg, Luke Emrose, Matthew Reid, Michael Balzer, Antoine Roille,
and Max Liani. 2017. Rendering the Darkness: Glimpse on <i>the LEGO Batman
Movie</i>. In ACM SIGGRAPH 2017 Talks (Los Angeles, California) (SIGGRAPH
’17). Association for Computing Machinery, New York, NY, USA, Article 8, 2 pages.
https://doi.org/10.1145/3084363.3085090

https://doi.org/10.1145/3214745.3214779
https://doi.org/10.1145/3084363.3085090

	Abstract
	1 Introduction
	2 User Interface
	2.1 Evaluation Options

	3 Backend
	3.1 OpenTimelineIO Contributions and Enhancements
	3.2 USD Integration
	3.3 Asset Resolution

	4 Results and Future Direction
	Acknowledgments
	References

