Forging a New Animation Pipeline with USD

Aloys Baillet
Animal Logic
aloysb@al.com.au

Eoin Murphy
Animal Logic
eoinm@al.com.au

Oliver Dunn
Animal Logic
oliverd@al.com.au

Miguel Gao
Animal Logic
miguelg@al.com.au

Figure 1: a) Forge Animation in Maya®; b) Forge TD in Maya®; c) Forge TD Standalone

ABSTRACT

The Peter Rabbit movie features 5 hero characters and dozens of
secondary characters animated across more than 1100 shots.

We introduce some practical and production-proven solutions to
integrate Pixar™ Universal Scene Description (USD) into Autodesk
Maya® based on our now opensourced AL_USDMaya plugin, and
how they were used to create a high performance and intuitive
animation platform.

CCS CONCEPTS

+ Computing methodologies — Animation; « Human-centered
computing — User centered design;

KEYWORDS

animation pipeline USD maya

ACM Reference Format:

Aloys Baillet, Eoin Murphy, Oliver Dunn, and Miguel Gao. 2018. Forging a
New Animation Pipeline with USD. In Proceedings of SSGGRAPH ’18 Talks.
ACM, New York, NY, USA, 2 pages. https://doi.org/10.1145/3214745.3214779

1 INTRODUCTION

In early 2016, we decided to use Autodesk Maya® for our rigging
system as it was the most optimal system for high performance
rigs; however we also knew it would not be able to scale to the
levels of complexity required by our typical productions in terms of
amount of geometry and viewport playback speed for non-rigged
elements.

We initially considered embedding our in-house scene descrip-
tion into Maya® for elements of the scene such as environments

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

SIGGRAPH 18 Talks, August 12-16, 2018, Vancouver, BC, Canada

© 2018 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-5820-0/18/08.

https://doi.org/10.1145/3214745.3214779

and geometry caches of characters and props. Indeed, we knew our
own scene description could efficiently represent huge amounts
of data thanks to its nested instancing system relied upon by our
proprietary renderer Glimpse, but we also knew it was lacking more
advanced features such as layering and variants.

Around that time, Pixar™ announced the opensourcing of their
own scene description called USD, which they kindly gave us early
access to. We soon decided to adopt USD and to build a more
advanced bridge into Maya®, which is now fully open-sourced and
called AL_USDMaya.

We created a proprietary Forge software stack to generate our
USD files and to present both simple and more advanced views to
users. Forge also allows to load these files both outside and inside
of Maya®.

2 ANIMATION SCENE INTEGRATION IN
MAYA®

Forge relies on the AL_USDMaya bridge, whose primary objective is
to make USD the owner of the whole scene data, directly streamed
by Pixar’s Hydra GL renderer into the Maya® viewport for optimal
performance.

Our bridge listens to USD state changes and selectively translates
some elements of the USD scene into corresponding Maya® objects.
Such objects are mostly cameras (Maya® does need a native camera
to have a functioning viewport) and animation rigs loaded as Maya®
References.

A plugin system allows custom translators to be registered against
specific USD Prim types. Among a few other opensourced custom
types, the ALMayaReference translator creates a Maya® reference
node on activation, unloads the reference when the prim becomes
inactive, and automatically updates the reference path when a dif-
ferent USD variant is selected. This live tracking of the scene allows
us to express different rig levels of details as USD variants.


https://doi.org/10.1145/3214745.3214779
https://doi.org/10.1145/3214745.3214779

SIGGRAPH 18 Talks, August 12-16, 2018, Vancouver, BC, Canada

3 ANIMATION SCENE WORKFLOW

In Forge, Animators are presented with a list of their assigned shots
for which they can choose to load all the latest approved shot data
from read-only geometry caches with a single click. In order to
animate the characters or props they can then selectively swap
these elements from their cache representation to the Maya® rig
representation from a single dropdown menu.

Animators can select a low-resolution rig for blocking only, or a
higher resolution rig to do facial animation or an even higher reso-
lution to animate muscle activation. Rigs resolutions are expressed
as USD Variants and are loaded as Maya® references, animation
curves are then loaded automatically from other Maya® files and
re-connected to the rig. Rigs can also be hidden and their evaluation
disabled when not needed anymore.

4 USD PYTHON COMMANDS

We soon realised that writing custom translators for every single
operation we had to run in Maya® would be a bottleneck. To over-
come this, we implemented a generic translator for a custom Python
command system. When translating a USD prim of type ALCom-
mand, the AL_USDMaya Translator would execute the correspond-
ing Python command. Command argument values are derived by
evaluating python expressions stored as string attributes on the
command prim.

#python
class LogShotName (Command ) :
def dolt(shotName):
print (shotName)

#usda 1.0
def "shot_xyz"{
def ALCommand "LogShotName "{
string [] commandTags =
["translatorImport "]
string argument:py:shotName =
"prim. GetParent (). GetName ()"

5 FORGE OPTIONS

As the complexity of the USD animation scene grew, we had to
abstract some USD state combinations and we implemented Forge
Options. These allow the bundling of prim active state and spe-
cific variants so that complex combination of USD state as well as
commands could be applied by the user with a single dropdown
menu.

Forge Options are implemented as a custom USD Schema typed
prim and are linked to characters and props in the shot via USD
relationships. Each option can configure arbitrary child prim (both
active state and selected variant) as well as run additional com-
mands. For example, the “rig_default” activates the “rig” and the
“motion” prims as well as selects the “default” variant on the rig
variantSet. The “wip_cache” option calls a custom command that

A. Baillet et. al.

v v148 ) V053

Default
Default

Defa

Rig Default ~ V295 ' V056 Default Fx

Figure 2: A shot in Peter Rabbit with over 6 characters where
an Animator has chosen to import the rig of the 2 characters
that require animating,.

bakes the current deformation to a new USD layer and selects this
new layer by switching a specific variant, and then hides the rig.

Data-driven configuration of the Forge User Interface allows
forge options to be filtered dynamically and only shows variants
that do exist on specific prims.

Figure 3: Same shot in the workspace view shows a simpli-
fied version of the possible combinations, where “peter01”
character has been locally edited and switched to a local
“wip cache” variant.

6 LIMITATIONS AND FUTURE WORK

Rig loading times are the main bottleneck during scene load times,
and we are in the process of reducing this time by moving the
geometry and rig bindings out of the Maya® files and into USD.

One other area we would like to improve is the overall control
and visualisation of events between USD, Maya® and our bridge.

We have also started to expand the use of USD into other de-
partments and are considering how the components presented here
will apply to different workflows.

ACKNOWLEDGMENTS

We would like to acknowledge the tremendous help provided by
many Pixar developers along the way.

We thank all the Animal Logic Developers (Daniel Barry, Rob
Bateman, Jon-Patrick Collins, Marco Giordano, Hongbin Hu, Hao-
liang Jiang, Fabrice Macagno, Michael Quandt), Technical Directors,
Technical Animators and Animators who all contributed to Forge
during the Peter Rabbit production.



	Abstract
	1 Introduction
	2 Animation Scene Integration in Maya®
	3 Animation Scene Workflow
	4 USD Python Commands
	5 Forge Options
	6 Limitations and Future Work
	Acknowledgments

