
Grip and Filament: A USD-Based Lighting Workflow
Steve Agland
Animal Logic

stevea@al.com.au

Simon Bunker
Animal Logic

simonbu@al.com.au

Jakub Jeziorski
Animal Logic

jakubj@animallogic.ca

Manuel Macha
Animal Logic

manuelm@al.com.au

Eoin Murphy
Animal Logic

eoin.murphy@gmail.com

Francesco Sansoni
Animal Logic

francescos@al.com.au

Figure 1: The Filament application at work on a Peter Rabbit 2 shot. PETER RABBIT and all associated characters ™ & ©
Frederick Warne & Co Limited. PETER RABBIT™ 2, the Movie © 2020 Columbia Pictures Industries, Inc. All Rights Reserved.

ABSTRACT
Animal Logic recently overhauled its outmoded lighting workflow
for the film Peter Rabbit 2. Since Pixar’s Universal Scene Descrip-
tion (USD) was being adopted as the primary scene description
format throughout the studio pipeline, this technology became a
natural backbone around which to implement the new lighting
toolkit. Following previous work to integrate USD into our anima-
tion pipeline[Baillet et al. 2018] we introduce Grip, a USD-native
library which provides a node-based approach to authoring proce-
dural modification of scenes; and Filament, a Qt-based application
serving as the artist front end for interacting with a USD scene, the
Grip engine, the production renderer, and pipeline tools.

CCS CONCEPTS
• Computing methodologies→ Computer graphics.

KEYWORDS
USD, VFX pipeline, lighting
ACM Reference Format:
Steve Agland, Simon Bunker, Jakub Jeziorski, Manuel Macha, Eoin Murphy,
and Francesco Sansoni. 2020. Grip and Filament: A USD-Based Lighting

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
SIGGRAPH ’20 Talks, August 17, 2020, Virtual Event, USA
© 2020 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-7971-7/20/08.
https://doi.org/10.1145/3388767.3407350

Workflow. In Special Interest Group on Computer Graphics and Interactive
Techniques Conference Talks (SIGGRAPH ’20 Talks), August 17, 2020. ACM,
New York, NY, USA, 2 pages. https://doi.org/10.1145/3388767.3407350

1 HISTORY
For a decade prior to Peter Rabbit 2, Animal Logic’s Lighting team
used a text-based render management tool known as RSS (Render
Submission Script). Working scenes were assembled in Maya, but
contained a mixture of native Maya data, Alembic files, Glimpse
archives and other in-house formats, all "bridged" into Maya in
different ways.

The RSS system had a number of disadvantages. When work-
ing interactively, it made destructive/non-undoable changes to the
scene. Light rigs were built in Maya as a separate asset to the asso-
ciated RSS script. There was only limited support for reusability,
and limitations on which scene changes could be made.

We experimented with in-house solutions to some of these prob-
lems in the form of CSD - Common Scene Description (an extension
of Glimpse’s GSS Format[Fascione et al. 2019, p. 110]) and Glance (a
Glimpse-centric pre-render scene modification system, with some
resemblance to Renderman RiFilters).

Meanwhile, Pixar shared an early cut of USD with us, and we
started to use it in Animation in 2016. Soon after, Animal Logic em-
barked on an ambitious project to build an end-to-end USD-based
pipeline, and by 2018 Lighting was ready to adopt the technology
as part of the effort to replace RSS with a next-generation toolkit.
The goals were to reduce the number of data representations to
a minimum, move to a more interactive lighting workflow, unify
several separate pipeline tools, and retain the best aspects of the

https://doi.org/10.1145/3388767.3407350
https://doi.org/10.1145/3388767.3407350


SIGGRAPH ’20 Talks, August 17, 2020, Virtual Event, USA J. Jeziorski et. al.

RSS system. These included automatability, consistency, and rapid
software iteration based on feedback from senior lighting artists.
We carefully considered off-the-shelf options. At the time, SideFX’s
Solaris project was only nascent and the Foundry’s Katana would
require data conversions. We also wanted to retain the ability to
customize the design.

Figure 2: Grip node graphs represent prim operations and
flow control (vertical), as well as queries and value process-
ing (horizontal).

2 THE SOFTWARE STACK
2.1 Grip
Developed by Jakub Jeziorski, Grip is a USD-native library which
provides a node-based approach to procedural modification of
scenes. It is designed to be lean (USD is Grip’s only dependency)
and support diverse use cases. This includes interactive use by
Lighting artists as well as efficient offline scene processing, such
as preparation of review renders for departments throughout the
pipeline.

Grip offers a number of node types: prim operations (creat-
ing prims, setting attributes, switching variants, etc); flow control
(merge, switch, iterate, etc); path queries (finding prim paths with
various predicates); and value processing (math operations on time-
sampled numeric values, string and array manipulation, etc).

Grip lazily evaluates a graph of operations andwrites the changes
to a private layer. The layer content is transferred to an arbitrary
stage layer in a single operation. "Read" operations use an im-
mutable stage, while "write" operations go to a mutable off-stage
target layer. Operations apply to a subset of prims using composable
query nodes, or usingGEL ("Grip Expression Language") statements,
which allow for sophisticated filtering during scene traversal. Grip
uses USD for serialising its node graphs, leveraging USD schemas
to generate python bindings.

Complex Grip graphs can be encapsulated by TDs or artists as
subgraphs with custom interfaces (Fig. 2), and can be published and
referenced elsewhere. Most nodes that artists work with are these
higher-level nodes. "Session values" can be used to provide hints to
the execution context (such as interactive vs offline, the current shot
or render quality level), allowing for flexible conditional behaviour.

2.2 AL_USDMaya
AL_USDMaya[Bateman et al. 2019] was used to author static light
rigs on Peter Rabbit 2, with changes translated interactively to the
USD stage, and Maya providing a familiar viewport.

2.3 Filament
Filament (Fig. 1) is a Qt-based application which sits at the top of
our software stack, allowing lighting artists to interact with USD
scenes, design Grip graphs and perform routine pipeline actions.
Filament can be run standalone or inside Maya. It is written in
Python, easily extensible by TDs, while performant operations are
handled by optimised low-level libraries. It glues together several
systems: USD, Grip, Glimpse, AL_USDMaya, render submissions,
production browsing, asset resolution overrides, etc. It is built on
Nucleus, our internal modular UI framework.

3 CONCLUSION
Reinventing our lighting toolkit based on a single data representa-
tion has simplified development in many respects. Less developer
time is spent handling corner cases and more time is spent im-
proving the user experience. Complications arose from our attempt
to support editing of static light rigs in AL_USDMaya while run-
ning Grip. We hope to avoid this in future by authoring all lights
dynamically through Grip.

4 FUTUREWORK
We are planning to convert our Glimpse-native material format
to USDShade and integrate material editing into Filament, reusing
work from our Grip UI. Scalability is a concern for our next major
production and we’re exploring more intuitive support for delayed
payloads and proxy geometry. We are also looking at extending
Grip evalution generate interim "snapshots" partway through the
graph. Filament is embedded in Maya to make use of its interactive
viewport, but this adds complex dependencies. Since Lighting’s
viewport requirements are relatively modest, we are investigat-
ing building an independent viewport for USD scene display with
support for selection and manipulation of lights.

ACKNOWLEDGMENTS
Thanks to Craig Welsh, Daniel Heckenberg, Eddie Hoyle, JP Collins,
Jonathan Penner, Rodrigo Janz, Callum Howard, Prethish Bhasuran
and the Lighting crew on Peter Rabbit 2. Thanks also to Sebastian
Grassia, George ElKoura and the USD team at Pixar for their sup-
port.

REFERENCES
Aloys Baillet, Eoin Murphy, Oliver Dunn, and Miguel Gao. 2018. Forging a New

Animation Pipeline with USD. In ACM SIGGRAPH 2018 Talks (SIGGRAPH ’18).
Association for Computing Machinery, New York, NY, USA, Article Article 54,
2 pages. https://doi.org/10.1145/3214745.3214779

Rob Bateman, Eoin Murphy, Fabrice Macagno, Paul Molodowitch, and Aloys Baillet.
2019. AL_USDMaya. https://github.com/AnimalLogic/AL_USDMaya.

Luca Fascione, Johannes Hanika, Daniel Heckenberg, Christopher Kulla, Marc Droske,
and Jorge Schwarzhaupt. 2019. Path Tracing in Production: Part 1: Modern
Path Tracing. In ACM SIGGRAPH 2019 Courses (SIGGRAPH ’19). Association
for Computing Machinery, New York, NY, USA, Article Article 19, 113 pages.
https://doi.org/10.1145/3305366.3328079

https://doi.org/10.1145/3214745.3214779
https://github.com/AnimalLogic/AL_USDMaya
https://doi.org/10.1145/3305366.3328079

	Abstract
	1 History
	2 The Software Stack
	2.1 Grip
	2.2 AL_USDMaya
	2.3 Filament

	3 Conclusion
	4 Future Work
	Acknowledgments
	References

