
Improving Groom Interactivity in Houdini
Curtis Andrus

curtis.andrus@animallogic.ca
Animal Logic

Vancouver, BC, Canada

Beau Parkes
beau.parkes@al.com.au

Animal Logic
Sydney, NSW, Australia

Don Boogert
don.boogert@gmail.com

Animal Logic
Vancouver, BC, Canada

(a) Skin Geometry (b) Guide Curves (c) Full Density Scatter (d) Length and Width (e) Scraggle

Figure 1: Different stages in an Alfro groom, starting from the initial geometry (a) up to the full groom in (e).

ABSTRACT
To improve performance and interactivityworkingwith ourHoudini-
based Grooming Tools, Animal Logic developed a set of custom
nodes to control and optimize the process of evaluating our groom
generation networks.

CCS CONCEPTS
• Computing methodologies→ Procedural animation.

KEYWORDS
hair, grooming, workflows, interactivity, animation

ACM Reference Format:
Curtis Andrus, Beau Parkes, and Don Boogert. 2022. Improving Groom
Interactivity in Houdini. In The Digital Production Symposium (DigiPro ’22),
August 7, 2022, Vancouver, BC, Canada. ACM, New York, NY, USA, 3 pages.
https://doi.org/10.1145/3543664.3543678

1 INTRODUCTION
Animal Logic’s Grooming Toolset, Alfro, has historically been built
on top of a proprietary node-based procedural geometry system
called ALF. However, creation/modification of nodes was limited
to R&D developers, and it had limited support for our USD-based
pipeline. SideFX’s Houdini, with Solaris, consistently improving
Grooming Tools, and high-levels of flexibility, was in a good position
to solve these problems. Because of this, we’ve transitioned the
artist-facing component of Alfro into a Houdini-based system over

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
DigiPro ’22, August 7, 2022, Vancouver, BC, Canada
© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9418-5/22/08. . . $15.00
https://doi.org/10.1145/3543664.3543678

the past several years, with an initial version on DC League of Super
Pets (2022).

Alfro fits into our larger Houdini-based Surfacing workflow built
around USD. At a high-level, artists work in a LOP Network to bring
in models, materials and other assets from our USD-based pipeline.
This is then connected into a SOP workarea, where the low-level
Alfro operations take place. Finally, the groom is brought back into
the USD stage to be rendered.

One of the goals of this transition was to ensure that Alfro could
be used by artists whose Houdini experience varies widely. To
enable groom construction without the need for a complex Houdini
network, we built our tools around the concept of a "stream," where
a single connection in the network brings along all the information
commonly used in a groom (e.g. groom curves, guide curves, skin
geometry, etc.). We provide a collection of HDAs that perform
common grooming operations (such as "Spiral" or "Clump") that
work with the stream concept, as show in Figure 2.

Another requirement for our tools was the concept of a Groom
Rig. Building bespoke grooms for each character is impractical at
scale, so artists aim to build rigs that act as templates for a certain
kind of style (e.g. double-coated animal fur). Most artists work with
rigs instead of the low-level Alfro operations, quickly grooming
a character by plugging guide curves and attribute maps into the
rig’s parameters.

We can represent groom rigs in Houdini directly with an HDA.
However, getting sufficient interactive behavior from our groom
rigs in this environment has proven been a challenge, for several
reasons:

• Working in multiple contexts (Solaris, SOPs, etc.) can easily
trigger a recook, especially if the artist hasn’t carefully set
up their Houdini workspace.

• Each cook evaluates the groom rig’s entire network, which
can get very heavy.

• Switching between different settings (such as preview and
render) requires an extra recook to switch back.

https://doi.org/10.1145/3543664.3543678
https://doi.org/10.1145/3543664.3543678

DigiPro ’22, August 7, 2022, Vancouver, BC, Canada Andrus, et al.

Figure 2: Example of a groom rig graph with Streams.

Some improvements can be made through better organization
of our Houdini scenes, as well as directly optimizing Alfro’s nodes.
However, we wanted to decouple performance from the artist’s set-
up as much as possible. To do this, we built a couple custom nodes
to wrap around important networks and managing the cooking of
their contents. These custom nodes are described in the following
sections.

2 CACHE NETWORK
With artists diving into inner SOP Networks to do their geometry
work, then back out to the USD context to render the result, it is very
easy to trigger a recook of a potentially expensive graph. In many
cases, the cooks can be triggered from changes that have nothing
to do with the groom itself. Houdini can often avoid recooking
through the use of Data IDs [SideFX 2022], but in many cases the
data ID can change even if the associated geometry has not, leading
to a potentially unnecessary recook. Other cases, such as doing a
render, involve the artist changing from some preview parameter
set (e.g. 10% density) to higher quality settings (100% density). This
results in one heavy cook before the render, followed by another
cook to go back to the preview settings.

Houdini does provide several options to store results and avoid
cooking (stashing / save to disk / etc.), but they largely depend on

the artist knowing when something should be saved or regenerated.
Other nodes, like the Cache SOP, are meant for caching results over
time for faster playback. Neither of these options are practical for
the problems described above.

We solve this problemwith a nodewe call theCache Network SOP,
which stores a history of previous results (and the inputs/parameters
used to generate them). If an internal node needs to cook with a
previously seen parameter set and inputs, the Cache Network sim-
ply returns the stored result and avoids any internal cooking. To
store the result history, we build a 128-bit hash (using the xxHash
library [xxHash 2022]) from the parameter values in its internal
subnetwork as well as the input geometry, and use that as keys into
a cache table (shared between all nodes in the Houdini process). To
avoid excessive memory usage, we limit the number of items in the
cache and evict with a least-recently-used strategy.

As an example, we placed our point scatter node into a Cache
Network and ran it on Houdini’s Rubber Toy geometry. Uncached,
the operation takes 33.5s to generate 7.9 million points. Subsequent
cooks, however, hit the cache return the result in 0.005s.

The cache network node is placed inside the component nodes
mentioned earlier. This hides any additional complexity from artists,
and enables caching of all intermediate grooming operations.

3 SOLO VIEW NETWORK
Aside from run-time performance, there are many cases where a full
evaluation isn’t necessary for an artist to get useful visual feedback.
One example would be working with clump curves (lower density
curves that drive the shape of denser hair clumps). Artists can get
feedback they need just by seeing the clump curves, and don’t need
to wait for the full density groom to be evaluated (which can be
quite expensive). Other examples of useful intermediate stages can
be seen in Figure 1, where each stage gives meaningful feedback.
However, since our groom rigs always cook the full result, seeing
the intermediate steps is not possible without unlocking and diving
into the rig’s details. Enabling intermediate steps would not reduce
the full evaluation time, but would reduce the time to feedback.

One possible approach to this "solo" behavior would be to use
a Switch node at the end of the Rig’s network that chooses which
node’s result to output based on some rig-level parameter. However,
this would effectively require artists to remember to build in this
functionality manually, which could be troublesome depending on
the their Houdini experience level.

To solve this, we built the Solo View Network SOP. When cooked,
our node locates a child node (specified by a string parameter),
cooks it and returns the result. The appropriate child node can
also be automatically detected based on which rig parameters have
changed (we call this “auto” mode).

To use auto mode, the artist creating the Groom Rig sets a
“solo_path” tag on each parameter, indicating which child node
is relevant. When that parameter changes, the Solo View node uses
the tags value to find the relevant child node. This gives a fairly
seamless experience for the user of a groom rig. A similar approach
could be taken with parameter Python callbacks, but this would
add a huge amount of extra complexity for the artist, and wouldn’t
handle cases like expressions.

Improving Groom Interactivity in Houdini DigiPro ’22, August 7, 2022, Vancouver, BC, Canada

Unlike the Cache Network node, this node wraps around the
entire groom rig. Manually setting parameter tags can be time-
consuming, so we provide a shelf tool to do a "best guess" tagging
based on channel references. The artist can then make additional
modifications where desired.

4 IMPLEMENTATION DETAILS
In these nodes, the cooking mechanism follows the same basic
pattern: find the relevant node, cook it and return a result. The com-
plexity comes from ensuring that our node maintains the correct
dependencies and gets cooked at the right time.

The Solo View node dynamically adds a dependency on the
selected child node, as well as any parameters (on its parent node)
with the solo_path tag. The Cache node adds dependencies on input
nodes, its internal output nodes and associated parameters.

4.1 Analytics Integration
One additional advantage of wrapping around the cooks of other
nodes is that we can instrument these cooks for analytics purposes.
In this case, Cache and Solo View SOPs enclose the calls to cook
with our distributed tracing library (based on OpenTracing and
Jaeger). The Solo View node captures the entire groom evaluation in
a single span, and the Cache node creates a span for the individual

groom operation. Because the groom operation cooks are contained
within the Solo View cook, we’re able to associate the individual
operations with the larger groom, giving us a complete breakdown
of what a groom rig is doing. This gives us groom rig performance
information at a studio level.

5 PRODUCTION ROLL-OUT
We are currently rolling these nodes out into groom rigs for our
active productions. The Cache Network is set up in nodes managed
by R&D and Production Technology, and can be enabled/disabled
through an environment variable. The Solo View Network is added
by artists at the rig level, so they can choose whether or not to
enable it when they build the rig.

Once these nodes are in widespread use, we plan to make more
use of the tracing functionality to understand where further per-
formance improvements can be made. We also see these nodes as
general purpose "interactivity tools," and we hope to apply them to
other areas beyond grooming, such as environment building and
cloth tools.

REFERENCES
SideFX 2022. Houdini HDK Data IDs. Retrieved May 9, 2022 from https://www.sidefx.

com/docs/hdk/_h_d_k__geometry__intro.html#HDK_Geometry_Intro_Data_IDs
xxHash 2022. xxHash - Extremely fast hash algorithm. Retrieved May 9, 2022 from

https://github.com/Cyan4973/xxHash

https://www.sidefx.com/docs/hdk/_h_d_k__geometry__intro.html#HDK_Geometry_Intro_Data_IDs
https://www.sidefx.com/docs/hdk/_h_d_k__geometry__intro.html#HDK_Geometry_Intro_Data_IDs
https://github.com/Cyan4973/xxHash

	Abstract
	1 Introduction
	2 Cache Network
	3 Solo View Network
	4 Implementation Details
	4.1 Analytics Integration

	5 Production Roll-Out
	References

