
Physically Based Lens Flare Rendering in “The Lego Movie 2”
Erik Pekkarinen

Animal Logic
erikp@animallogic.ca

Michael Balzer
Animal Logic

michaelba@animallogic.ca

Figure 1: Standalone lens flares demonstrating occlusion and lens dirt effects generated by our approach (left); lens flares in
“The Lego Movie 2: The Second Part” © 2019 Warner Animation Group (center and right).

ABSTRACT
We present our approach for incorporating realistic lens flare ren-
dering in a production renderer based on a previously presented
physically based lens simulation technique [Hullin et al. 2012]. We
describe the approximations and sampling techniques behind effi-
cient lens flare rendering, in addition to introducing flexible artist
controls and workflows for this purpose. Using “The Lego Movie 2:
The Second Part” as a case study, we show that these approaches
are efficient and work well in a production environment.

CCS CONCEPTS
• Computing methodologies→ Lens simulation.

KEYWORDS
camera, lens flare, rendering, artist workflow

ACM Reference Format:
Erik Pekkarinen and Michael Balzer. 2019. Physically Based Lens Flare
Rendering in “The Lego Movie 2”. In DigiPro ’19: The Digital Production
Symposium (DigiPro ’19), July 27, 2019, Los Angeles, CA, USA. ACM, New
York, NY, USA, 3 pages. https://doi.org/10.1145/3329715.3338881

1 INTRODUCTION
Lens flares are image artifacts generated by light being reflected
within a camera’s lens system before hitting the image sensor. Since
all physical lens systems generate flares to some extent, their pres-
ence is a norm in films, and consequently is expected in realistic
computer generated imagery. They are even introduced artificially,

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
DigiPro ’19, July 27, 2019, Los Angeles, CA, USA
© 2019 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-6799-8/19/07.
https://doi.org/10.1145/3329715.3338881

for example, to give shots a more interesting or dramatic look. Tradi-
tionally, phenomenological approaches are used to synthesize lens
flares, but more recent techniques are physically based and model
light interaction with individual lens system elements [Hullin et al.
2011].

The technique by [Hullin et al. 2012] models lens interactions
using polynomial systems obtained as Taylor expansions of the an-
alytic ray-surface intersections at the optical axis. Here, individual
polynomials depend on the physical properties of the lens elements,
such as their dimensions and wavelength dependent IORs, and get
combined into systems based on the actual lens arrangements in-
side a camera. Using this to transform rays is more efficient than
naïve ray tracing approaches, especially since multiple systems can
be composed and then truncated to the desired degree. This makes
the evaluation cost per light path independent of the number of lens
elements while keeping the approximation error roughly constant.

The efficiency of this approach combined with uncompromised
physical accuracy makes it ideal for production rendering, where
the real-time rendering constraints of many alternative approaches
do not apply and a photorealistic result is the primary goal. A C++
implementation of this technique by its authors is available as the
Polynomial Optics Toolkit. The presented lens flare renderer is built
around this library.

2 LENS FLARE LIGHT PATHS
Lens flares are generated by light paths involving reflections. Only
light paths with an even number of reflections can travel from
the front lens to the image sensor. The Fresnel equations tell us
that typically less than 1 % of transmitted radiance is reflected at
any lens surface. This results in the radiance of flares going down
rapidly with their reflection count, and thus considering light paths
with only two reflections is a reasonable approximation. These
reflections are obtained as the 2-combinations of all the material
interfaces. For example, in a lens system with 29 material interfaces
this results in 406 light paths.

https://doi.org/10.1145/3329715.3338881
https://doi.org/10.1145/3329715.3338881


DigiPro ’19, July 27, 2019, Los Angeles, CA, USA E. Pekkarinen and M. Balzer

a
p
e
r
t
u
r
e

s
e
n
s
o
r

Figure 2: Two rays from different lens flare generating light
paths.

a
p
e
r
t
u
r
e

s
e
n
s
o
r

Figure 3: Rays from the same light path that are occluded by
scene geometry, the camera housing and the aperture.

Figure 2 shows example rays from different light paths with two
reflections. Each of these light paths consists of three transmission
segments. Given the systems for the individual lens elements from
the Polynomial Optics Toolkit, we combine them to get the trans-
formations for each segment. These systems are then combined to
obtain the transformations for the complete light paths.

Due to occlusion, not all rays from lens flare generating light
paths reach the image sensor. As illustrated in Figure 3, rays origi-
nating from a light source may be occluded by geometry outside of
the lens system, by the camera housing or by the aperture. We han-
dle the first case by raycasting against the scene geometry, while
the other two cases are handled by testing the ray positions against
the image sensor and the aperture geometry. For aperture occlusion
testing, we evaluate up to three additional systems per light path,
one for each transmission segment passing the aperture.

We use the Fresnel equations to estimate the radiance carried
by a light path. In addition to the material dependent part, we
include the angle dependent Fresnel factor. Since the contributing
rays are nearly parallel to the optical axis after passing the front
lens, and computing the angle dependent factor at every interface is
expensive, we estimate this with the Schlick approximation [Schlick
1994] at the front lens.

3 SAMPLING
We sample lens flares by connecting a random sample on a light
source with a random sample on the front lens. For this given entry
point and direction to the lens system, the evaluation of the light
path transformation provides us the exit point and direction at
the back lens. We then use this to test against the image sensor
geometry, and determine the splat location of the sample in the
image.

Figure 4: Different lens systems supporting anamorphic,
wide-angle and multi-zoom setups (top), and different coat-
ing presets (bottom).

To improve convergence, we try to maximize the number of
samples arriving at the image sensor. We observed that the distri-
bution of these unoccluded samples is very non-uniform across
both light paths and the front lens area. Because of this, we sample
them both adaptively. While the light paths already have a natural
partioning, the front lens is partitioned uniformly into cells. The
overall sampling probability then becomes ps = plp × pcell, where
plp is the light path sampling probability and pcell is the front lens
cell sampling probability. The normalization weight of a sample
that arrives at the image sensor is

ws =
1/ps∑N
i=1 1/pi

, (1)

where N is the total number of samples hitting the sensor. In prac-
tice we found that the best convergence is obtained when the prob-
abilities ps are defined as the fractions of radiance carried by each
subset of rays. The adaptive sampling increases the sensor hit rate
for the standalone lens flare renders in Figure 1 from about 15 % to
about 90 %.

To splat the unoccluded samples on the image sensor, we estimate
their radiance Ls as

Ls = L(λ) × clens × l × Flp ×ws , (2)

where L(λ) is the radiance incoming from the light at wavelength
λ, clens is the lens attenuation factor, l is the Lambertian reflectance
coefficient of the ray at the image sensor and Flp is the light path
Fresnel factor. The lens attenuates rays as clens = cdirt × ccoating,
where cdirt is the front lens dirt color and ccoating is the product of
the light path lens coating colors.

4 ARTIST WORKFLOW
The lens flare renderer is part of Animal Logic’s proprietary render
engine. It is used in a separate render pass for selected shots and
lights with prominent flares. The input scene is the same as that
used for the main render pass. Additionally, lights generating lens
flares are flagged. These lights can also have separate intensity
multipliers for the lens flare pass.



Lens Flare Rendering DigiPro ’19, July 27, 2019, Los Angeles, CA, USA

To support a wide variety of lens systems, the renderer parses
a lens system description along with a coating color description
and an attenuating front lens dirt map as properties of the render
camera. The used lens system descriptions are based on real-world
lens descriptions. Existing render camera properties like f-stop,
aperture blade count and focal length affect the lens system in a
physically correct way. Figure 4 illustrates the wide range of looks
that can be achieved with these input parameters.

If the main render pass uses a separate lens distortion model, it is
taken into account by applying the distortion on the light samples
in image space. This way the flares correctly line up with their
generating light source when composited with the main render.

The renderer supports the output of individual flares as indepen-
dent layers to allow their manipulation in compositing. To reduce
the number of lens flare layers, it merges all flares below a given
radiance threshold into a single layer.

A typical 720p lens flare preview render takes less than 10 sec-
onds, whereas a typical 2K production quality render takes less
than 15 minutes. These render times were feasible in production,
as they were fractions of the main render pass times.

5 CONCLUSIONS
Our lens flare renderer was used for about 50 shots in “The Lego
Movie 2: The Second Part”. This represents the majority of the film’s
strongly backlit shots. The renderer was easily adopted by artists
since it largely uses existing camera parameters and scene setups.

There are strong expressions of interest for its usage in Animal
Logic’s future animation and VFX projects.

One limitation is that it cannot account for stochastic scatter-
ing processes and diffraction since these are not captured by the
underlying Polynomial Optics Toolkit.

In the future, we would like to determine the correct sensor
normalization with respect to the light intensity to make the input
parameter units physical. We also intend to allow for denoising of
flares by correctly capturing their sampling variance, and reduce
variance in the first place by adaptively sampling multiple light
sources as well as their occlusion. We also plan to add camera hoods
and procedurally animated aperture shapes.

ACKNOWLEDGMENTS
Thanks go toDaniel Heckenberg, RafiqDandoo, Laurianne Proud’hon
as well as the lighting crew and supervisors for their support and
invaluable feedback.

REFERENCES
Matthias Hullin, Elmar Eisemann, Hans-Peter Seidel, and Sungkil Lee. 2011. Physically-

based Real-time Lens Flare Rendering. ACM Trans. Graph. 30, 4, Article 108 (July
2011), 10 pages. https://doi.org/10.1145/2010324.1965003

Matthias B. Hullin, Johannes Hanika, and Wolfgang Heidrich. 2012. Polynomial Optics:
A Construction Kit for Efficient Ray-Tracing of Lens Systems. Computer Graphics
Forum (Proceedings of EGSR 2012) 31, 4 (July 2012).

Christophe Schlick. 1994. An Inexpensive BRDF Model for Physically-based Rendering.
Computer Graphics Forum 13, 3 (1994), 233–246. https://doi.org/10.1111/1467-
8659.1330233

https://doi.org/10.1145/2010324.1965003
https://doi.org/10.1111/1467-8659.1330233
https://doi.org/10.1111/1467-8659.1330233

	Abstract
	1 Introduction
	2 Lens Flare Light Paths
	3 Sampling
	4 Artist Workflow
	5 Conclusions
	Acknowledgments
	References

