
Permission to make digital or hard copies of part or all of this work for personal or 
classroom use is granted without fee provided that copies are not made or distributed 
for commercial advantage and that copies bear this notice and the full citation on the 
first page. Copyrights for third-party components of this work must be honored. For all 
other uses, contact the Owner/Author. 
SIGGRAPH 2014, August 10 – 14, 2014, Vancouver, British Columbia, Canada. 
2014 Copyright held by the Owner/Author. 
ACM 978-1-4503-2960-6/14/08 

Assembling Environments with LEGOscape

Joseph Hegarty Bryan Smith Jens Jebens John Paul Molloy
Animal Logic∗

Figure 1: a) 1x1 plate, b) 32 sub-voxels per voxel, c) Bit index for each sub-voxel, d) Two-level spiral ordering c©Warner Bros Inc., Village
Roadshow, The LEGO Corporation. All rights reserved.

Abstract

When creating props and set pieces for The LEGO Movie, mod-
elers would use LEGO Digital Designer to place each individual
brick. While this gave complete control over the type and place-
ment of every brick, it did not scale well for large objects such as
terrains, canyons, or mesas. To allow users to rapidly create these
large objects we created a procedural brick placement system called
LEGOscape.

1 Overview

LEGOscape takes a mesh representation of an object and iteratively
fills it with bricks. Each iteration fills the mesh using a pattern,
which is an infinitely repeating arrangement of bricks of a single
type. Patterns have a number of attributes used to control their ar-
rangement such as shift, stagger, and spacing. Bricks defined by a
pattern are inserted into the world if they are inside the mesh sur-
face and either do not intersect with any existing bricks or, if they
do intersect with existing bricks, result in a better fit. In the lat-
ter case, the newly added better fitting brick will evict any existing
bricks which it intersects with.

2 Data Representation

Initially only rectangular bricks were supported, so it was natural
to use the smallest LEGO brick as the voxel unit, the 1x1 plate
(Fig.1a). Internally LEGOscape used integers rather than floating-
point numbers to represent locations in space, with one unit along
each coordinate axis mapping to the corresponding dimension of
the 1x1 plate. The integer representation made indexing into the
world precise and efficient. Bricks placed in the world would add
themselves to a boolean-valued occupancy grid, while mesh vol-
umes were rasterised into a boolean-valued terrain grid. Patterns
would examine these two grids when adding bricks into the world.

Once we had the basic system up and running the next step was to

∗{joeyh, bryans, jensj, johnpaulm}@al.com.au

add support for angular bricks, which are crucial in modeling flow-
ing landscapes for example. Rather than move to a floating-point
representation, we simply supersampled the voxels into sub-voxels.
Conveniently the dimensions of the 1x1 plate, being roughly twice
as wide and deep as it is tall, naturally lead to a 4x4x2 supersam-
pling, which gave 32 sub-voxels per voxel (Fig.1b). The 1x1 plate
remained the coordinate unit inside LEGOscape, however we now
represented each voxel as a 32-bit integer, with each bit correspond-
ing to a sub-voxel. This allowed us to perform comparisons be-
tween bricks and grids efficiently using standard bitwise operators:

bv1 & bv2; // do bricks intersect?
countBits(bv1 ˆ bv2); // diff in sub-voxels
bv & ˜tv; // does brick breach terrain?

In general, LEGO bricks can be placed in one of four orientations.
While rectangular bricks often possess symmetries that make their
appearance invariant to rotations, this is rarely the case for angular
bricks. We needed a way to rotate voxels efficiently for use in com-
parisons. By using a two-level spiral bit order (Fig.1c and Fig.1d)
voxels could be rotated using the following bit operations:

voxel << 8 | voxel >> 24; // 90 degrees
voxel << 16 | voxel >> 16; // 180 degrees
voxel << 24 | voxel >> 8; // 270 degrees

3 Modeling Workflow

Although modelers wanted a procedural tool to help them fill large
objects with LEGO bricks, they did not want to give up control
of brick selection and placement. Generally it was sufficient for
flat regions to have varying sized unaligned rectangular bricks, but
the precise placement of angular bricks was very important when
maintaining the flow of a model.

To do this, instead of manually placing each brick, modelers would
manipulate the mesh surface interactively. Since LEGOscape fills
the mesh volume as tightly as possible, by manipulating the shape
of the mesh modelers could coax LEGOscape into placing specific
bricks in specific locations very effectively.

4 Rendering

Although LEGOscape is used interactively through the use of re-
gion of interest bounds, for very large objects using many patterns it
could take more than a minute to process. Rather than pay this cost
per frame, the brick data was baked into a particle system, which
was then rendered using our brick instancing PRMan procedural.

http://crossmark.crossref.org/dialog/?doi=10.1145%2F2614106.2614180&domain=pdf&date_stamp=2014-07-27

