
Matte Painting a Brighter Future: A USD-Based Toolset in Nuke
Michael De Caria
michaeldec@al.com.au

Animal Logic
Sydney, NSW, Australia

Prethish Bhasuran
prethishb@al.com.au

Animal Logic
Sydney, NSW, Australia

Mitja Müller-Jend
mitjam@animallogic.ca

Animal Logic
Vancouver, BC, Canada

Manuel Macha
manuelm@al.com.au

Animal Logic
Sydney, NSW, Australia

Figure 1: The Nuke application showcases Animal Logic’s various in-house USD-based panels used by matte painting artists.
Presented is the USD ALab Open Source Scene.

ABSTRACT
We introduce Animal Logic’s advanced 3D matte painting toolset
AL_USDNuke, which seamlessly integrates Nuke into our USD-centric
pipeline. We detail the integration of numerous components such
as our path-traced GlimpseViewport for instant representation of
large USD stages, a user-friendly node-based toolset to modify
USD stages, visualisation by our in-house renderer Glimpse for
high-fidelity ground-truth feedback, and complementary views to
efficiently manage USD stages inside Nuke. This was achieved by a
specialised Nuke to USD translator and our brand-new framework
Plasma, an enhancement of Animal Logic’s in-house Nucleus frame-
work for large-scale application development, tailored to Nuke.
These developments improve matte painting artists’ efficiency on
complex USD stages and allow them to publish their work into

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
DIGIPRO ’23, August 05, 2023, Los Angeles, CA, USA
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0238-9/23/08. . . $15.00
https://doi.org/10.1145/3603521.3604294

shots for the benefit of all other upstream as well as downstream
departments.

CCS CONCEPTS
• Computing methodologies→ Animation.

KEYWORDS
matte painting nuke USD animation pipeline

ACM Reference Format:
Michael De Caria, Prethish Bhasuran, Mitja Müller-Jend, and Manuel Macha.
2023. Matte Painting a Brighter Future: A USD-Based Toolset in Nuke. In The
Digital Production Symposium (DIGIPRO ’23), August 05, 2023, Los Angeles,
CA, USA.ACM,NewYork, NY, USA, 5 pages. https://doi.org/10.1145/3603521.
3604294

1 INTRODUCTION
The Matte Painting department at Animal Logic traditionally sat at
the back end of the pipeline, alongside lighting and compositing,
creating predominantly 2D matte paintings in Photoshop projected
onto 3D geometry inside Nuke [Foundry 2023]. However, these
assets were not intended or able to be re-ingested into the pipeline
by upstream departments. Animal Logic’s company-wide adoption
of USD (Universal Scene Description) [Pixar 2023] for our pipeline

https://doi.org/10.1145/3603521.3604294
https://doi.org/10.1145/3603521.3604294
https://doi.org/10.1145/3603521.3604294

DIGIPRO ’23, August 05, 2023, Los Angeles, CA, USA M. De Caria et al.

foundation, which occurred during the production of Peter Rab-
bit 2 (2021), presented an opportunity to completely reassess our
approach to matte paintings.

We soon discovered that the consumption of a shot’s entire
USD stage would quickly overwhelm Nuke’s native 3D system.
We explored other viable alternatives such as DreamWorks’ USD
plugins [DreamWorks 2023] which had been open-sourced around
the same time, as well as Pixar, who generously provided us access
to their usd-nuke plugin. After the initial investigation, it was
decided to implement proprietary USD read and write nodes in
part due to requiring an integrated UI that enables users to load
sub-selections of large USD stages into Nuke. This was the first
step in our journey to provide USD workflows.

Our USD pipeline integration in Nuke, known as AL_USDNuke,
started around 2020 and the first project to adopt it was DC League
of Super-Pets (2022). The design revolves around a custom USD
translator for Nuke nodes and is enhanced by existing in-house UI
components. This allowed our tools to leverage the power of USD’s
stage composition to publish DMP (digital matte painting) assets
to all departments, with artists from any craft group able to review
their shots in context with fully integrated matte paintings.

2 TOOLSET DEVELOPMENT
Feedback from artists would progressively lead to enhancements
of the toolset on subsequent projects with the goal to improve intu-
itiveness and meet creative requirements. The toolset’s workflow
has evolved to encompass the following:

• Provide node-based capabilities to manipulate the USD stage
such as adding geometry, setting up materials, camera pro-
jections and modifying prim attributes.

• Manage and context switch between multiple USD stages
and their associated session layers.

• Serve as a toolkit for artists to push their DMP work from
Nuke directly into one or multiple shots.

• Preview, load and render complex USD stages directly inside
Nuke by integrating multiple in-house views.

2.1 Approach
Python is the primary programming language used to integrate the
various components of the AL_USDNuke toolset. However, numer-
ous of those components are leveraging lower-level languages like
C++ to enhance performance. This approach provided TDs with
an environment that allows fast iterations for implementing new
features into AL_USDNuke.

Our initial development efforts were focused on translating Nuke
node networks to USD layers.

To direct USD prim-overrides into their designated layers we
utilised established components of Animal Logic’s Entity & Frag-
ment pipeline [Collins et al. 2022].

We also adopted our pre-existing in-house Qt UI framework,
Nucleus, and seamlessly unified it with Nuke.

2.2 In-render compositing
Our former methodology of compositing the matte painting with an
image from the renderer, led to inconsistencies in lighting and per-
spective, making it appear disconnected from the rest of the scene.

Figure 2: Diagram representation of the AL_USDNuke’s im-
plementation and scene management. The matte painting
layer represents the generated output from Nuke, while a
USD stage serves as the initial entry point.

With the introduction of AL_USDNuke, the work now produced by
the Matte Painting department is rendered by Glimpse [Hecken-
berg et al. 2017] and viewed directly within Nuke. This workflow
essentially enables in-render compositing of DMP work within the
3D scene, making for more seamless, believable renders and the
matte painting environment interacts correctly with the lighting,
shadows, and reflections more realistically. This DMP work will
be delivered to the Lighting department where subsequent renders
are produced using Filament [Agland et al. 2020].

2.3 Skydomes
As skydome matte paintings are frequently requested, the toolkit
includes one-click solutions to create the required geometry and
shader setup. The key aspect of this is provided by the Virtual-
Breakdown API [Collins et al. 2022] which facilitates the break-
down recipe for skydomes. The creation of complex geometries
was not discouraged; artists had the freedom to generate additional
geometry using Nuke or to import it from other DCC applications
like Maya.

3 NUKE TO USD TRANSLATOR
The translator component of AL_USDNuke fundamentally works
by interpreting a Nuke node network and then generating the
associated USD overrides for each node which is targeted to a
session layer. Scene translation occurs as a 2-step process, USD
Geometry creation and look development. The latter can be seen
in Figure 3.

Matte Painting a Brighter Future DIGIPRO ’23, August 05, 2023, Los Angeles, CA, USA

Figure 3: A Nuke node graph consisting of AL_USDNuke look nodes constructing a multi-layered matte painting.

3.1 Geometry and look development
Geometry conversion during translation was done using our NDK
(Nuke Developer Kit)-based USD writer and was introduced by the
node AL_USDAddGeo, capable to input any 3D geometry supported
by Nuke. Look development of the USD geometry was the second
process; all material-based look nodes have a predefined associated
USDShade shader network and support Prim assignment, texture
inputs and shader parameters. Where possible, native Nuke nodes
are being reflected by each USD look node. To give an example,
the Camera projection node AL_USDCameraProjection would use
a Project3D and ApplyMaterial with exposed inputs to provide a
camera and textures.

3.2 Layer generation
The layer generation of translated Nuke nodes takes place either
through local rendering or by publishing the work to our asset
management system. Rendering will use a Nuke node we call
AL_USDGlimpseRender which internally is driven by an NDK node
GlimpseImage, which will pass the image buffer rendered back to
Nuke’s 2D system. Publishing the USD layer created by the node
network is managed by the AL_USDCheckin node. Both nodes will
invoke the translator and traverse up the network, performing
the translation of each Nuke node to USD equivalent, perform-
ing validation which then notifies the artist if any operation is
incompatible.

The generated USD layers will follow our internal Entity and
Fragment USD structure [Collins et al. 2022] and trigger a review to
be rendered through our automated review system. In essence, the
geometry will be part of the geo fragment and the look development
will be published to the look fragment, both referenced under a
top-level domain for the Matte Painting department which is the
USD layer composed in shots.

3.3 Texture baking
Texture baking played a crucial role in enhancing render efficiency
and preventing artists from having to spend time pre-processing
their textures. Texture inputs to Look nodes can be any Nuke net-
work that can be rendered to a 2D image, which is subsequently then
automatically written out to disk. To know if any adjustments are
made to the texture’s Nuke node network, and a rebake is required:

Figure 4: On the top is a simple AL_USDNuke look
network with a texture and camera plugged into
an AL_USDCameraProjection node. Displayed on
the bottom are the knob properties of the selected
AL_USDCameraProjection node.

a node hash is implemented using node.opHashes() in combination
with a node map cache. In cases where Reads are the only input
and no colour space conversions are required, the baking can be
skipped, and the renderer can be provided with a reference to the
texture directly.

DIGIPRO ’23, August 05, 2023, Los Angeles, CA, USA M. De Caria et al.

4 PLASMA
Plasma is a Nuke-specific enhancement built with Animal Logic’s
in-house large-scale application Nucleus framework. It allows us to
leverage Animal Logic’s existing library of UI components/Widgets
developed for USD which significantly accelerates the development
process as minimal UI components were required to be written
from scratch. Within this framework, we automate Nuke menu
creation, panel creation to show the views and Nuke’s workspace
tools to control how the views were positioned in the UI. Nuke’s
callback system is also integrated to autogenerate events, for exam-
ple, timeline updates could be used to trigger an action in the USD
views.

The main advantage of Plasma is that new views added can
easily be made to interact with any existing ones. When we started
looking into the UI part of the USD integration, we wanted to let
the artists use UIs that they were already familiar with, such as an
Outliner, Shelf, and predominantly a customisable 3D viewport.

4.1 Pushing to the viewport
During testing, we found that Nuke’s native 3D system did not
scale well when it came to large scenes once converted. On the
other hand, our in-house USD GlimpseViewport could display and
handle large USD scenes without any performance degradation. To
maintain native Nuke 3D nodes support, Figure 5 is an example
where artists could visually select parts of the scene and push parts
of the 3D geometry into Nuke.

4.2 Supplemental USD views
Other USD-related panels made available in Nuke were a USD
Properties view for viewing or modifying USD attributes and a USD
session view for dealing with the opening or closing of USD stages.
These adjustments were only for the current Nuke session and
don’t get saved with the Nuke scene. If the artist wanted modified
attributes to be baked out into USD for future sessions, they needed
to be made using AL_USDModifier node and added to the node
graph.

5 FUTUREWORK
The recent release of Nuke-14 and its fully redesigned USD-based
3D system will open enticing, new possibilities. Future work will
be focused on enhancing AL_USDNuke with those new features
and enable workflows which are currently hard to implement due
to the separation of USD and Nuke’s native 3D system. We will
also explore direct texture rendering without intermediate files
on disk to further improve turnaround times on production shots.
Furthermore, we are preparing to make AL_USDNuke accessible to
Lighting and Compositing artists so that they can also benefit from
its feature set.

6 CONCLUSIONS
The deployment of AL_USDNuke had a big impact on the produc-
tivity of matte painting artists at Animal Logic by streamlining
previously fragmented and unfeasible workflows due to the lim-
ited native USD features inside Nuke. Animal Logic’s USD pipeline
design played a critical part in enabling these modern workflows.
Although we incurred the development cost of early adoption of

USD within Nuke, it still resulted in immediate value and provided
us with a clear direction for the future. Artists are now able to
be more efficient and have the flexibility to deliver their work di-
rectly into shots via USD stage composition, providing a distinct
advantage over our previous approach to integrating digital matte
painting.

ACKNOWLEDGMENTS
The authors would like to thank Aaron Barclay, Scott Russell, John
Rix for their significant contributions and their integral role in
realising the original vision. We would also like to thank Yara Du
for her recent contributions to Plasma and Zhicheng Ye for his
foundational work on the Nuke USD Reader/Writer.

REFERENCES
Steve Agland, Jakub Jeziorski, Manuel Macha, Simon Bunker, Francesco Sansoni,

and Eoin Murphy. 2020. Grip and Filament: A USD-Based Lighting Workflow. In
ACM SIGGRAPH 2020 Talks (Virtual Event, USA) (SIGGRAPH ’20). Association for
Computing Machinery, New York, NY, USA, Article 33, 2 pages. https://doi.org/10.
1145/3388767.3407350

Jon-Patrick Collins, Romain Maurer, Fabrice Macagno, and Christian Lopez Barron.
2022. USD at Scale. In The Digital Production Symposium (Vancouver, BC, Canada)
(DigiPro ’22). Association for Computing Machinery, New York, NY, USA, Article
11, 6 pages. https://doi.org/10.1145/3543664.3543677

DreamWorks 2023. DreamWorks Animation USD Plugins GitHub Page. Retrieved May
12, 2023 from https://github.com/dreamworksanimation/dwa_usd_plugins

Foundry 2023. Nuke Product Page. Retrieved May 12, 2023 from https://www.foundry.
com/products/nuke-family

Daniel Heckenberg, Luke Emrose, Matthew Reid, Michael Balzer, Antoine Roille,
and Max Liani. 2017. Rendering the Darkness: Glimpse on the LEGO Batman
Movie. In ACM SIGGRAPH 2017 Talks (Los Angeles, California) (SIGGRAPH ’17).
Association for Computing Machinery, New York, NY, USA, Article 8, 2 pages.
https://doi.org/10.1145/3084363.3085090

Pixar 2023. Pixar’s Graphics Technology Page. Retrieved May 12, 2023 from https:
//graphics.pixar.com/

https://doi.org/10.1145/3388767.3407350
https://doi.org/10.1145/3388767.3407350
https://doi.org/10.1145/3543664.3543677
https://github.com/dreamworksanimation/dwa_usd_plugins
https://www.foundry.com/products/nuke-family
https://www.foundry.com/products/nuke-family
https://doi.org/10.1145/3084363.3085090
https://graphics.pixar.com/
https://graphics.pixar.com/

Matte Painting a Brighter Future DIGIPRO ’23, August 05, 2023, Los Angeles, CA, USA

Figure 5: A singular object pushed and converted into Nuke’s native 3D system with USD views including Stage Outliner, USD
viewport and USD Properties.

	Abstract
	1 INTRODUCTION
	2 TOOLSET DEVELOPMENT
	2.1 Approach
	2.2 In-render compositing
	2.3 Skydomes

	3 NUKE TO USD TRANSLATOR
	3.1 Geometry and look development
	3.2 Layer generation
	3.3 Texture baking

	4 PLASMA
	4.1 Pushing to the viewport
	4.2 Supplemental USD views

	5 FUTURE WORK
	6 CONCLUSIONS
	Acknowledgments
	References

