:')

Check for
Updates

Hair Tubes: Stylized Hair from Polygonal Meshes of Arbitrary
Topology

Soorya Narayan] M
Animal Logic
Sydney, Australia
soorya.narayan@al.com.au

Figure 1: Different hairstyles generated from hair tubes.
Copyright © 2023 Animal Logic Pty Ltd. All Rights Reserved.

ABSTRACT

In this paper, we describe a fast, topology-independent method to
generate bundles of hair from a mesh defining the outward shape of
the hair. This allows artists to focus on the outward appearance and
create stylized painterly hairstyles. We describe a novel approach
to parameterize a hair mesh using ideas from discrete differential
geometry and offer simple controls to distribute hair within the
volume of the mesh. We present real-world production examples
of various hairstyles created using our proposed method.

CCS CONCEPTS

« Computing methodologies — Mesh geometry models.

KEYWORDS

Procedural Geometry, Hair Mesh, Hair Modeling, Discrete Differ-
ential Geometry

ACM Reference Format:

Soorya Narayan J M. 2023. Hair Tubes: Stylized Hair from Polygonal Meshes
of Arbitrary Topology. In SIGGRAPH Asia 2023 Technical Communications
(SA Technical Communications "23), December 12—15, 2023, Sydney, NSW, Aus-
tralia. ACM, New York, NY, USA, 4 pages. https://doi.org/10.1145/3610543.
3626157

1 INTRODUCTION

Detailed hair models are an important part of a character’s look.
However, modeling individual strands of hair is a tedious process.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SA Technical Communications "23, December 12—15, 2023, Sydney, NSW, Australia

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0314-0/23/12...$15.00
https://doi.org/10.1145/3610543.3626157

& ‘,;/
2 \ '

~ .

)

A common practice is for artists to model hair styles as polygonal
surfaces which are then used to automatically generate individual
hair strands.

Over the years, numerous approaches have been explored to de-
scribe hair curves from higher-level representations. Early methods,
as surveyed by [Ward et al. 2007], relied on procedural techniques
to generate fine hair details. Although this allowed artists to focus
on the overall look, approaches like patch and wisp based model-
ing had a drawback: hair models were indirectly specified through
parameters. Not having an explicit silhouette mesh limited direct
control over the outer shape, making it difficult to match a precise
look. Having a silhouette mesh also has the benefit of simplifying
some types of hair simulation workflows, since the polygon mesh
can be tetrahedralized and simulated as a solid. There are existing
workflows for converting polygon meshes to hair strands; however,
they either impose topology restrictions on the input mesh [Yuksel
et al. 2009] or involve converting the mesh to a volume [Ghoniem
and Museth 2013].

In this paper, we introduce a new topology-independent ap-
proach to generate hair from polygonal meshes. Our aim is to offer
an artist-friendly workflow that grants complete control over craft-
ing stylized hairstyles while minimizing the technical demands
placed on artists. Our technique leverages discrete differential ge-
ometry for mesh parameterization, which serves as the basis for
generating the hair strands. We also propose a simple process to
break down larger hair models into smaller bundles, giving artists
more flexibility in styling hair.

2 HAIR TUBES WORKFLOW

In Figure 2, we provide an overview of the hair generation process.
First, we compute a smooth, slowly changing parameterization of
the input silhouette mesh, which will allow us to identify evenly
spaced cross sections of the mesh (subsection 2.1). After comput-
ing the isolines from parameterization, an optional cleanup step

https://orcid.org/0009-0002-3903-3320
https://doi.org/10.1145/3610543.3626157
https://doi.org/10.1145/3610543.3626157
https://doi.org/10.1145/3610543.3626157
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3610543.3626157&domain=pdf&date_stamp=2023-11-28

SA Technical Communications "23, December 12-15, 2023, Sydney, NSW, Australia

Soorya Narayan] M

Input Mesh (a)

Figure 2: Breakdown of our procedural method to generate hair. (a) Smooth 1-d mesh parameterization. (b) Traced isolines.
(c) Optional cleanup of isolines. (d) Finding the corresponding points in isolines. (¢) Outer hair generation. (f) Inner hair

generation.
Copyright © 2023 Animal Logic Pty Ltd. All Rights Reserved.

ensures satisfactory results for challenging input geometry (sub-
section 2.2). We then create the outer hairs by re-sampling, sorting,
and connecting points on the isolines. To generate internal hairs
and prevent tangles, we interpolate between the outer hairs. We
provide user controls to customize the hair distribution to attain the
desired visual appearance (subsection 2.4). We also briefly describe
how we generate attributes to style hair and additional tools to
work with larger hair meshes (section 3).

2.1 Mesh Parameterization

An important objective of the algorithm is to generate hair for
any input mesh topology. To accomplish this, we need a param-
eterization of the mesh that allows us to compute evenly spaced
cross sections of the mesh perpendicular to its medial axis. The
parameterization should be:

(1) smooth, so that the isolines are smooth.

(2) slowly changing, to obtain evenly spaced isolines.

(3) aware of the underlying geometry, so you can smoothly

interpolate from one end to the other.

For our initial attempt, we tried calculating geodesic distances by
isolating one end loop of the tube and computing distances from
this loop to every other point on the mesh. However, as it doesn’t
account for the curvature of the mesh, this can generate skewed
isolines and unsatisfactory results in general (see Figure 3).

To obtain a more natural set of isolines that follows the flow of
our mesh, we turned to ideas from geometry processing and graph

Figure 3: Left: Fiedler Vector, Right: Geodesic distance.
Copyright © 2023 Animal Logic Pty Ltd. All Rights Reserved.

theory. Harmonic functions, which are solutions to the Laplace
equation, are commonly used in cage deformation for boundary
interpolation. As demonstrated by [DeRose and Meyer 2006], these
functions satisfy all the specified criteria. Isenburg et al. [2005]
introduced a parameterization technique based on spectral graph
theory to computing a vertex ordering for a mesh.

The work of Levy et al. [2006] unifies these concepts by construct-
ing a function basis over an arbitrary topology using the Laplacian
and spectral graph theory. They also show how the natural ordering
derived from Isenburg et al. [2005] can be obtained from the Fiedler
eigenvector of the graph Laplacian. If G is a simple connected graph
with n vertices and if L is the Laplacian matrix for G, then L has

Hair Tubes: Stylized Hair from Polygonal Meshes of Arbitrary Topology

n real eigenvalues that satisfy 0 = 11 < A2 < A3 < ... < A,. The
Fiedler Value (A3) is the second smallest eigenvalue of its Laplacian
matrix L and the Fiedler vector is the corresponding eigenvector
[Fiedler 1973]. The Fiedler vector is of interest since it defines a
1-dimensional embedding of the graph on a line that respects the
edge lengths of the graph. To enhance geometry awareness, Levy et
al. replace the graph Laplacian with the Laplace-Beltrami operator,
allowing the generation of a function basis over a mesh of arbitrary
topology by solving the generalized eigenvalue problem Lx = AMx
where L is the Laplacian of the mesh and M is the per vertex mass
matrix. The Fiedler eigenvector of this equation provides a natural
vertex ordering that satisfies all of our specified requirements.

In our implementation, we adopt the Laplacian formulation of
[Goes et al. 2020], which allows us to compute a discrete Laplacian
matrix for arbitrary mesh topologies. Applying the Fiedler vector
of the Laplacian back to the mesh as a per-vertex attribute gives us
a parameterization that is quick to compute and does not require
tweaking per mesh (section 4).

2.2 Generating contour lines

Once we have computed the Fiedler eigenvector, we trace out iso-
lines at evenly spaced isovalues.

When the input mesh lacks sufficient resolution or is not closed,
the isolines near the ends of the mesh may be open curves (Fig-
ure 2(b)) which can lead to artifacts in the hair generation process.
To address this, we utilize a half-edge data structure to identify
the open edge loops of the input mesh. Subsequently, we interpo-
late between the last closed isoline and the open ends of the tube
(Figure 4).

Figure 4: Open Isolines cleanup.
Copyright © 2023 Animal Logic Pty Ltd. All Rights Reserved.

2.3 Generating the outer hair

It is not guaranteed that the winding order of isolines is consistent
across the mesh. To achieve a smooth line of hair that follows the
shape of the input mesh, we need to determine how to join the
points in the isolines, denoted I;=(.

To accomplish this, we first re-sample all isolines to have the
same number of points, n. Then we perform two closest point
lookups between the isolines I; and I;;; to find the corresponding
point indices. The first pair of closest points defines a starting line
that we use to determine the relative orientation of the second pair
of points. We use this information to compute a consistent point
ordering and resolve inconsistent winding.

(see Algorithm [1]). Alternatively, it is possible to use a poly-
gon vector area to resolve the winding inconsistencies. To prevent
zigzagging of hair along the mesh, we provide the option to smooth

SA Technical Communications "23, December 12-15, 2023, Sydney, NSW, Australia

Algorithm 1 Generating Outer Lines.

. sort(Iy.) // sort by iso value

: resample(Ip_n, n) // n := user input

: compute_point_ordering(Iy_n) // as described above
. Finally, sort and join corresponding points in isolines

[R

the lines. We then do closest point lookups to the input mesh to
make sure the overall shape remains the same.

2.4 Inner Hairs and attributes

Now that the isocircles have a consistent number of points and
are sorted, we can generate inner hairs by interpolating the outer
hairs. The scheme is similar to a uniform scattering of points within
a circle, where each point is represented in polar coordinates as
(4/r,0). In the process, we compute the centroid of each of the
isolines, which allows us to get the medial axis of the input mesh
for free.

Figure 5: Tube cross sections with varied hair distributions.
Copyright © 2023 Animal Logic Pty Ltd. All Rights Reserved.

In practice, pairing this quick but naive scattering scheme with
a ramp to control the density has been flexible enough for artists to
obtain their desired hair distribution (Figure 5). This model makes
it easy to generate attributes such as distance from the medial axis,
which, when combined with the implicit point ordering obtained
from the isolines, allows standard post-processing like scraggles and
the addition of strays (section 3). In addition, we can also sample the
input mesh at the corresponding points for any shading attributes
like texture coordinates or colors, allowing artists to paint maps for
the tube input mesh and have the tool automatically transfer them
to the generated hairs.

3 STYLING AND ADDITIONAL TOOLING

We can use the process from section 2 to generate clumped looks
from a larger coarsely modeled hair mesh or style individual bundles
differently. Our mesh parameterization and contour line generation
scheme allows us to split larger hair meshes into smaller tubes, as
shown in Figure 6. The splitting of tubes can be defined through two
parameters, a cross section and a fracture pattern. In Figure 6, the
first isoline and a voronoi fracture pattern are shown in the red box.
The fracture pattern is parameterized using barycentric coordinates
corresponding to its associated cross section. These coordinates
are then used to project the pattern to the remaining isolines. Each
isoline is split into separate polygons on the basis of the projected
pattern, and the corresponding polygons are connected to form
separate smaller tubes. These smaller tubes can optionally be modi-
fied to add separation and tapering. Once the new tubes have the
desired look, the hair tube workflow from section 2 can be used to
generate hair.

SA Technical Communications ’23, December 12-15, 2023, Sydney, NSW, Australia

T T

Figure 6: Workflow for large mesh to smaller clumped tubes.
Copyright © 2023 Animal Logic Pty Ltd. All Rights Reserved.

To add realism, each individual tube can be styled to add strays
as shown in Figure 7. Strays are chosen as a percentage of total hair,
and their distribution can be controlled as a function of distance
from the medial axis. Similarly, the points on the hair have an
implicit ordering as a result of sorting the isolines and therefore,
it’s trivial to define a periodic noise function on the strand to add
some variety to the look and perform other standard hair workflows
like clumping.

Figure 7: Strays and Scraggles.
Copyright © 2023 Animal Logic Pty Ltd. All Rights Reserved.

4 RESULTS

Our algorithm is implemented in Houdini, using Eigen [Guen-
nebaud et al. 2010] for linear algebra routines and Spectra [Qiu
2015] to solve the eigenvalue problem. We implement the discrete
Laplacian operator for polygonal meshes according to the formu-
lation by [Goes et al. 2020]. In practice, we found that a hyper
parameter value of A = 1.5 worked best for the eigenvalue problem
solve for quad meshes. We also observed that Spectra generates
more consistent results when we compute the first 4 or 5 eigenvec-
tors instead of just the first.

For a typical hair set up with 50-100 tubes and 4000 hairs per
tube like in Figure 1, hair styling from loading the mesh to a final
result takes between 3-10 seconds on an Intel Xeon Gold 6226R @
2.90GHz. The most expensive operation in this setup is computing
the Laplacian eigenvector in (Section 2.1) but it only needs to be
computed once per mesh and can be cached. The rest of the process
is relatively cheap to compute, allowing artists to tweak the look
interactively at 2-3 fps for a full character groom.

Soorya Narayan]| M

5 CONCLUSIONS AND FUTURE WORK

By relaxing constraints in the hair creation process, we have devel-
oped a robust hair workflow that enables artists to design hairstyles
with ease.

As with any discrete differential geometry setup, the quality of
the meshing affects the accuracy of the computation. Our current
implementation is catered to regular, production-quality meshes.
While the method performs reasonably well for lower quality meshes
with varying edge lengths, it can be improved to handle highly ir-
regular geometries by employing intrinsic triangulation methods
[Sharp et al. 2019] to construct the discrete Laplacian matrix. An-
other approach is to perform the eigenvector calculation on an
explicitly remeshed surface and then transfer the computed param-
eterization to the original surface using UV coordinates. It is worth
noting that these more complex computations can be performed as
a pre-processing step without impeding the overall workflow.

A limitation of the current approach arises when dealing with
certain complex meshes, such as star-shaped inputs, where manual
intervention is required to divide the mesh. An extension to address
this scenario is to treat the Fiedler vector as a scalar field and
utilize it to compute the Reeb graph of the mesh [Doraiswamy and
Natarajan 2013]. This Reeb graph can subsequently be employed to
automatically partition the mesh into distinct regions, each of which
can then be processed using the hair tube algorithm to generate hair.
Another easy improvement would be to automatically determine
the number of isolines needed for a given mesh based on heuristics
related to the curvature and size of the mesh.

ACKNOWLEDGMENTS

We would like to thank Anna Molamphy for the tooling to break
down a hair mesh into smaller clumps, Beau Parkes for their help
in integrating the hair tubes setup in the Animal Logic pipeline,
and Joshua Matthews for their feedback, testing, and setting up the
teaser figures.

REFERENCES

Tony DeRose and Mark Meyer. 2006. Harmonic Coordinates.
semanticscholar.org/CorpusID:6098355

Harish Doraiswamy and Vijay Natarajan. 2013. Computing Reeb Graphs as a Union
of Contour Trees. IEEE Transactions on Visualization and Computer Graphics 19, 2
(2013), 249-262. https://doi.org/10.1109/TVCG.2012.115

Miroslav Fiedler. 1973. Algebraic connectivity of graphs. Czechoslovak Mathematical
Journal 23, 2 (1973), 298-305. http://eudml.org/doc/12723

Ashraf Ghoniem and Ken Museth. 2013. Hair Growth by Means of Sparse Volumetric
Modeling and Advection. In ACM SIGGRAPH 2013 Talks. Association for Computing
Machinery, New York, NY, USA, Article 34.

Fernando De Goes, Andrew Butts, and Mathieu Desbrun. 2020. Discrete differential
operators on polygonal meshes. ACM Transactions on Graphics 39, 4 (2020).

Gaél Guennebaud, Benoit Jacob, et al. 2010. Eigen v3. http://eigen.tuxfamily.org.

M. Isenburg and P. Lindstrom. 2005. Streaming meshes. In Visualization Conference,
IEEE. IEEE Computer Society.

B. Levy. 2006. Laplace-Beltrami Eigenfunctions Towards an Algorithm That "Un-
derstands" Geometry. In IEEE International Conference on Shape Modeling and
Applications 2006 (SMI'06).

Yixuan Qiu. 2015. Spectra: C++ Library For Large Scale Eigenvalue Problems.
https://spectralib.org.

Nicholas Sharp, Yousuf Soliman, and Keenan Crane. 2019. Navigating Intrinsic Trian-
gulations. ACM Trans. Graph. 38, 4 (2019).

Kelly Ward, Florence Bertails, Tae yong Kim, Stephen R. Marschner, Marie paule
Cani, and Ming C. Lin. 2007. A Survey on Hair Modeling: Styling, Simulation, and
Rendering. IEEE Transactions on Visualization and Computer Graphics 13, 2 (2007).

Cem Yuksel, Scott Schaefer, and John Keyser. 2009. Hair Meshes. ACM Trans. Graph.
28, 5 (2009).

https://api.

https://api.semanticscholar.org/CorpusID:6098355
https://api.semanticscholar.org/CorpusID:6098355
https://doi.org/10.1109/TVCG.2012.115
http://eudml.org/doc/12723

	Abstract
	1 Introduction
	2 Hair Tubes Workflow
	2.1 Mesh Parameterization
	2.2 Generating contour lines
	2.3 Generating the outer hair
	2.4 Inner Hairs and attributes

	3 Styling and additional tooling
	4 Results
	5 Conclusions and Future Work
	Acknowledgments
	References

