
Developing a Curve Rigging Toolset:
a Case Study in Adapting to Production Changes

Thomas Stevenson
Animal Logic

Wellington, New Zealand
thomas.stevenson@al.com.au

Valerie Bernard
Animal Logic

Vancouver, BC, Canada
valerie.bernard@animallogic.ca

Figure 1: Examples of curve and function rigs (left) and a production tongue rig built on the same technology (right).

ABSTRACT
We present an overview of Animal Logic’s curve rigging toolset
and its development process, serving as a case study to discuss chal-
lenges specific to doing software development for animated feature
film production. We will show how R&D projects at Animal Logic
lean on agile software practices to enable ambitious development
projects, with flexible plans that adapt to the reality of working
with creative stakeholders. We will highlight the importance of pro-
duction engagement, reflect on our technical decisions made over
a year of active development while reacting to drastic production
schedule changes, and share lessons learned along the way.

CCS CONCEPTS
• Computing methodologies→ Animation; Parametric curve
and surface models.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
DigiPro ’24, July 27, 2024, Denver, CO
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN XXXX-XXXX-X/24/06. . . $15.00
https://doi.org/XXXXXXX.XXXXXXX

KEYWORDS
Curve, Spline, Rigging, Animation, Project Management

ACM Reference Format:
Thomas Stevenson and Valerie Bernard. 2024. Developing a Curve Rigging
Toolset: a Case Study in Adapting to Production Changes. In Proceedings of
Digital Production Symposium 2024 (DigiPro ’24). ACM, New York, NY, USA,
5 pages. https://doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION
Since 2016, Animal Logic has been crafting a new animation pipeline
based on Autodesk Maya® and Pixar USD®. The Animation and
Rigging R&D team is in charge of maintaining rigging tools, like
our rigging framework and proprietary deformation system Bond
[Baillet et al. 2020] and animation tools, such as our shot sculpt-
ing toolset [Bernard et al. 2022]. Our animated features can vary
greatly in animation styles, driving the need for solid generic rig-
ging toolsets that can cover a vast array of creative requirements.
With our experience building new workflows and tools for both
rigging and animation over the past few years for our new pipeline,
we look to share the lessons we have learned on how to adapt devel-
opment plans to the reality of working with creative stakeholders,
and how we react to drastic changes in production schedules and
priorities. We will use the development of our new curve rigging
toolset as a case study.

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

DigiPro ’24, July 27, 2024, Denver, CO Thomas Stevenson and Valerie Bernard

1.1 The original request from production
Since we transitioned to our Maya pipeline, curve rigging technol-
ogy at Animal has been limited to proprietary nodes, derived from
Catmull-Rom splines, for creating and sampling curves, along with
making use of Blur Studio’s [TwistSpline 2023] nodes. These nodes
were used on our latest shows, The Magician’s Elephant and Leo
(see Fig 2).

At the start of 2023, with an animated feature starting mid-year
that we knew included a character with a long highly articulated
tail, the rigging team asked for a variable FK node (see [Brosky
2013]) to simplify their existing trunk and tail setups.

Figure 2: Characters built using existing curve technology
©Netflix.

1.2 The motivation for a curve rigging toolset
With asset production starting in the fall of 2023, we saw an op-
portunity for addressing that variable FK request along with a vast
array of other features. Our existing solutions had limitations, like
lack of control over tangency and normal interpolation. These ad-
hoc solutions can be quick to deliver and perform their purpose
but don’t lend themselves to feature growth.

With a powerful library of generic curve nodes, we would be able
to address any new curve feature request very quickly, so we can
easily reproduce desired industry solutions for tentacles [Hessler
and Talbot 2016], ropes [Sheerin et al. 2022], motion paths [Lin
et al. 2023] and anything else production might require. Creating a
variable FK setup for instance would become trivial with the right
building blocks.

We put together a project pitch for production approval, docu-
menting limitations of existing solutions and our proposed solution
of a framework for curve rigging as in Fig 3.

Figure 3: Excerpts from our project proposal.

1.3 Managing the risks
Before greenlighting the project, we assessed the risks involved and
how to mitigate them. We illustrate the following steps we took to
address our main concerns.

1.3.1 Defining a Minimum Viable Product (MVP). As we created a
development plan during pre-production, our knowledge of creative
requirements was limited. Characters can be cut, the animation
style can be updated, leading to different technical requirements in
the rigs. We ran the risk of implementing features that end up not
being used in production. The more specific the feature, the higher
the risk. We minimized this risk by defining an MVP to be delivered
for testing a couple months before asset production started in the
fall. Once we knew more about the show’s creative requirements
we could schedule development of advanced features.

1.3.2 The "bus factor". Our team is cross-functional, with tech-
nical expertise to cover all aspects of doing R&D for animation
and rigging but not all engineers have the expertise to maintain
all projects. What happens if we lose our main developer? We ran
regular technical workshops to ensure more engineers could con-
tribute to code reviews and overall code maintenance, providing
opportunities for up-skilling team members.

1.3.3 Technical stakeholders. Rigging being a technical discipline,
we ran the risk of seeing riggers develop their own plugins to
address a short term need, instead of waiting for a more elabo-
rate solution that covers all use cases. This is not a concern we
have when doing projects for animators and we must adapt our
approaches for each project based on our stakeholders.

1.3.4 Production engagement. A big concern with long develop-
ment cycles is having enough engagement from artists to guarantee
a successful outcome in production. Past experiences have taught us
that delivering major developments into production can be painful
for artists if they did not buy into the project from the start. Sprint
reviews and weekly catch ups with rigging supervisors and leads
keep us in constant communication so we can revise priorities

Developing a Curve Rigging Toolset DigiPro ’24, July 27, 2024, Denver, CO

based on production needs. With excited riggers supporting our
plan, development started in June 2023.

2 PROJECT OVERVIEW
2.1 Curve primitives
With the various curve rigging methods in use in production, we
opted to implement multiple curve types and support various ap-
proaches to rigging curve normals. This gave artists the flexibility
to use the toolset with their preferred approach.

We opted not to support Catmull-Rom splines. The inability
to control tangency is a significant downside and we preferred
to provide "auto-tangent" behaviour as part of the Cubic Bezier
infrastructure.

We also decided to skip NURBS splines, as in Maya’s native curve
implementation. In practice, rigging only uses a subset of NURBS,
the closed uniform B-Spline. This has the desirable properties where
each control point has a consistent influence over the curve and
where the curve passes through the first and last control points.
As such, we provided a closed uniform B-Spline type that does not
require artists to provide a knot vector as part of the tooling.

In part due to our choice to support multiple curve types, we
opted to implement curve normals as their own primitive, as in
Fig 4. This has the effect of not producing a combinatorial explosion
of types (i.e. supporting oriented and non-oriented versions of each
curve type). While this results in additional connections in the
node graph, artists aren’t forced to use a specific curve normal
interpolation method.

(a) Curve. (b) Node graph.

Figure 4: Separate curve and curve normals primitives.

2.2 MVP features
We included the basic primitives, curves and curve normals, and the
basic nodes for visualising, creating, querying and sampling in our
MVP. We had also planned on delivering a Bond curve deformer to
ensure we addressed all basic needs from control rig to deformation
stack, along with all necessary nodes to implement the variable FK
setup.

However, before we could tackle the curve deformer, riggers
asked for new features with high priority based on how asset work
was progressing in pre-production and their testing of the MVP.
This pushed the deformer back, and the variable FK was now set
to lowest priority, beyond more advanced features. In particular,
riggers asked for sine curves to address a very specific creative
requirement in a character on the show.

2.3 Advanced features
With the core functionality in place, we focused on the ability to lock
curve samples to a specified length, and the node infrastructure
required to sufficiently replace the existing Catmull-Rom node
behaviour using the Cubic Bezier curve type.

Length locking can be achieved by remapping the parameter
space of the curve, as opposed to splitting or rebuilding the curve,
and can thus be conceptualised as a function mapping 𝑡 ∈

[
0, 1

]
to

𝑡 ∈
[
𝑛,𝑚

]
as seen in Fig 5.

(a) Length locked curve (left) and its node graph (right).

(b) Sine wave applied to a curve (left) and its node graph (right).

Figure 5: Examples of functions in use.

Sine curves generally provide for offsetting a parametric curve
on its normal and binormal, using a sine curve with control over
the frequency and amplitude in both axis.

Furthermore, the original request for Variable FK, lower in pri-
ority but still required down the line, can be reformulated as a sum
of functions operating in rotation space and can therefore also be
represented as a function.

This provided us with three use cases for implementing a more
generalised interface for functions. As with curve normals, we
implemented these functions as a separate primitive which can be
reused in all cases.

Length locking was delivered as a single lengthLock node and
the sine curve functionality as a single sineOffset node. For prac-
tical usage, it was also necessary to have tip and tail falloffs and
variation in amplitude and frequency.

These function primitives, while requiring additional develop-
ment around the node infrastructure, allowed flexibility in defining
functions for remapping the parameter space and for offsetting in
curve space.

We then looked to extend the Cubic Bezier node infrastructure
to emulate the existing auto-tangent of the Catmull-Rom nodes.
This was accomplished by working out ideal Cubic Bezier tangent

DigiPro ’24, July 27, 2024, Denver, CO Thomas Stevenson and Valerie Bernard

placements and then providing the ability to blend between the
manual and auto tangents.

2.4 Changes in slate of shows
The fall of 2023 came with the announcement of changes to our
slate of shows, which impacted the projects our teams had in devel-
opment. This meant that our production teams had a few months
to focus on internal creative projects before work began on the new
upcoming shows starting mid-2024. We then looked to revisit our
development priorities to align with the requirements of these new
projects.

2.5 New rig component priorities
At that time, the rigging team started a complete overhaul of our
facility components, which drastically changed their curve require-
ments. Without enough time for us to implement the requested
features, riggers integrated custom plugins they wrote into their
components. We then followed along their work to ensure we built
feature parity over the coming weeks into the toolset, to later easily
replace those temporary plugins with the official nodes.

As part of the facial component development, Cubic Bezier
curves had started to be used. This highlighted some issues with
the way we had implemented the Cubic Bezier node infrastructure,
and some time was spent reworking it.

As riggers were focusing on components, we pushed the curve
deformer in favour of investigating a further reported issue with
our approach to arc-length parameterisation.

2.6 An opportunity for research
For Bezier curves, existing arc-length parameterisation solutions
have degenerate cases which were picked up by artists during
testing. There are workarounds that we likely would have used in
the middle of production, however these are not ideal for a general
purpose toolset and we could spare a couple of months to solve the
problem properly.

For B-Splines, being a popular choice among experienced Maya
riggers, it was noted that Maya’s default chord parameterisation
method was preferable in certain cases, having the advantage of
preserving the localisation of a control’s influence.

We investigated to find an appropriately efficient and accurate
method for solving both parameterisation problems and settled on
an approximation method that satisfied our requirements, work-
ing for both Bezier and B-Spline curves and providing the span
parameterisation in parity with Maya’s chord parameterisation.

2.7 New show priorities
With new animated features starting up in the spring of 2024, we
once again refocused on production requirements, although differ-
ent from what we initially started with. For instance, we were now
looking at potentially elaborate rigs for characters wearing dresses.

We added support for closed curves and localised parameterisa-
tion, as in Fig 6, and extended the curves into two dimensions in
order to support rigging surfaces.

We must note again that the curve deformer work was pushed
in order to implement these features. The variable FK request was
all but forgotten at this point.

Figure 6: Example of a closed Cubic Bezier curve with param-
eterisation localised to the curve segments.

3 LESSONS LEARNED
3.1 Production engagement is critical
Maintaining good production engagement over the lifetime of a
long development project is critical for its success.

Sprint reviews provide a platform for continuous feedback, al-
lowing for changes to the development plan based on direct input
from artists. Keeping informed on the work being done by rigging
artists can also shift requirements and priorities.

Adapting the development schedule to accommodate day to day
requests helps to keep engagement high, showing a commitment
to supporting the artists’ immediate needs and creating a sense of
collaboration.

3.2 Sometimes you need to push back
While responsiveness to artist requests is important, it’s also some-
times necessary to push back and enforce set priorities for the sake
of code quality.

It took us a year to finally prioritize the implementation of our
curve deformer, which was meant to be an MVP feature. This was
fine in terms of priorities for artists, but implementing the deformer
would have let us put in place some code infrastructure that would
have greatly simplified the implementation of the sine curve nodes.
As it stands, rushing the sine curves led to the introduction of some
tech debt early into the project life cycle. Looking back, we had time
to do the deformer before the sine curves needed to be delivered so
this could have been avoided.

We’ve since learned to spend time with rigging supervisors look-
ing at delivery schedules and how we can best accommodate major
development requests without sacrificing code quality when possi-
ble.

3.3 You can’t predict everything artists will need
Animation production is inherently as agile as development. Our
creative partners are constantly iterating and responding to director
and test audience feedback, having to adjust their own priorities and
goals. Designing software that can be responsive to these changes
is key for pain-free production adoption.

Preparing a thorough project proposal with short and long term
goals that was validated by production helped us come up with a
simple software design that was highly flexible to priority changes.

Developing a Curve Rigging Toolset DigiPro ’24, July 27, 2024, Denver, CO

4 CONCLUSION AND FUTUREWORK
With careful planning and constant communicationwith the rigging
team, we were able to successfully deploy our new curve nodes into
production rigs. The response from riggers and animators using the
rigs has been highly enthusiastic and our toolset is now maintained
by multiple engineers focusing on upcoming show priorities.

Further development projects are also being launched using
these curve nodes as a framework, such as screen space tools for
silhouette sculpting in animation, rigging for surfaces, 2D texture
animation, linework. We’ll also probably implement that variable
FK node at some point...

ACKNOWLEDGMENTS
We would like to thank our team members Antoine Domon, Daniel
Springall, James Dunlop and Miguel Gao for their contributions to
the project, and Enrique Caballero and the whole rigging team for
their continued trust and collaboration.

REFERENCES
Aloys Baillet, Josh Murtack, Hongbin Hu, Haoliang Jiang, and Michael Quandt. 2020.

Bond: USD-Integrated Hybrid CPU, GPU Deformation System. In ACM SIGGRAPH
2020 Talks (Virtual Event, USA) (SIGGRAPH ’20). Association for Computing Ma-
chinery, New York, NY, USA, Article 34, 2 pages. https://doi.org/10.1145/3388767.
3407324

Valerie Bernard, Miguel Gao, Daniel Springall, and David Ward. 2022. Powering up
Rig Deformation: Shot Sculpting on DC League of Super-Pets. In ACM SIGGRAPH
2022 Talks (Vancouver, BC, Canada) (SIGGRAPH ’22). Association for Computing
Machinery, NewYork, NY, USA, Article 45, 2 pages. https://doi.org/10.1145/3532836.
3536247

Jeff Brosky. 2013. Trunk rig - Variable FK - How it works. Video. Retrieved May 10,
2024 from https://vimeo.com/72424469

Mark Hessler and Jeremie Talbot. 2016. AutoSpline: animation controls only when
and where you need them. In ACM SIGGRAPH 2016 Talks (Anaheim, California)
(SIGGRAPH ’16). Association for ComputingMachinery, New York, NY, USA, Article
7, 2 pages. https://doi.org/10.1145/2897839.2927439

Andy Lin, Hannah Swan, Justin Walker, Cathy Lam, and Ricky Arietta. 2023. Swoop:
Animating Characters Along a Path. In ACM SIGGRAPH 2023 Talks (Los Angeles,
California) (SIGGRAPH ’23). Association for Computing Machinery, New York, NY,
USA, Article 45, 2 pages. https://doi.org/10.1145/3587421.3595425

Daniel Sheerin, Joshua Beveridge, Enoch Ihde, Stirling Duguid, Brian Casper, Andrea
Parkhill, Ed Lee, and Carlos Fraiha. 2022. Rigging the Rigging: An Animation
Friendly Rope System for The Sea Beast. In The Digital Production Symposium
(Vancouver, BC, Canada) (DigiPro ’22). Association for Computing Machinery, New
York, NY, USA, Article 3, 7 pages. https://doi.org/10.1145/3543664.3543680

TwistSpline. 2023. blurstudio/TwistSpline. Blur Studio. Retrieved May 10, 2024 from
https://github.com/blurstudio/TwistSpline

https://doi.org/10.1145/3388767.3407324
https://doi.org/10.1145/3388767.3407324
https://doi.org/10.1145/3532836.3536247
https://doi.org/10.1145/3532836.3536247
https://vimeo.com/72424469
https://doi.org/10.1145/2897839.2927439
https://doi.org/10.1145/3587421.3595425
https://doi.org/10.1145/3543664.3543680
https://github.com/blurstudio/TwistSpline

	Abstract
	1 Introduction
	1.1 The original request from production
	1.2 The motivation for a curve rigging toolset
	1.3 Managing the risks

	2 Project Overview
	2.1 Curve primitives
	2.2 MVP features
	2.3 Advanced features
	2.4 Changes in slate of shows
	2.5 New rig component priorities
	2.6 An opportunity for research
	2.7 New show priorities

	3 Lessons Learned
	3.1 Production engagement is critical
	3.2 Sometimes you need to push back
	3.3 You can't predict everything artists will need

	4 Conclusion and Future Work
	Acknowledgments
	References

