
Real-Time Refraction Shader for Animation
Antoine Domon

Animal Logic
Sydney, NSW, Australia

antoine.domon@al.com.au

Ankit Sinha
Animal Logic

Sydney, NSW, Australia
ankit.sinha@al.com.au

Zhicheng Ye
Animal Logic

Sydney, NSW, Australia
zhicheng.ye@al.com.au

Valerie Bernard
Animal Logic

Vancouver, BC, Canada
valerie.bernard@animallogic.ca

Figure 1: a) The cornea mesh encompasses the iris and pupil and has transparent faces on the tip acting as a refractive surface;
b) Default viewport render; c) Viewport render with textures and refraction shader; d) Render of the same frame with Glimpse;

ABSTRACT
We present Animal Logic’s solution to simulate light refraction in
deformable characters’ eye corneas in Autodesk®Maya®’s view-
port, with a result close to the final render, significantly reducing
iterations for facial animation workflow. Our approach is tightly
integrated with Animal Logic’s GPU-based deformation engine
for a minimal impact on playback. The refraction is generated au-
tomatically from the scene’s geometries and a simplified shading
definition exported by the lookdev department using Pixar®Univer-
sal Scene Description. It has proven to give reliable results, allowing
for its adoption in production for all current and upcoming shows.

CCS CONCEPTS
• Computing methodologies → Computer graphics; Anima-
tion.

KEYWORDS
animation rig deformation USD Maya OptiX CUDA
ACM Reference Format:
Antoine Domon, Ankit Sinha, Zhicheng Ye, and Valerie Bernard. 2024. Real-
Time Refraction Shader for Animation. In Special Interest Group on Computer
Graphics and Interactive Techniques Conference Talks (SIGGRAPH ’24 Talks),
July 28-31, 2024. ACM, New York, NY, USA, 2 pages. https://doi.org/10.1145/
3532836.3536247

1 INTRODUCTION
Rasterization graphics pipeline has always been a standard in the
animation industry. While it has demonstrated strong abilities for
fast playback, it often lacks rendering features that might be critical

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
SIGGRAPH ’24 Talks, July 28-31, 2024, Denver, CO, USA
© 2024 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9371-3/22/08.
https://doi.org/10.1145/3532836.3536247

for validating a shot at the animation stage. One of them is the re-
fractive nature of transmissive materials that cannot be represented
in the viewport of most animation software.

Light refraction in the cornea plays a significant role in the per-
ceived shape of the iris and the pupil, which are crucial elements
for characters’ expressiveness. Integrating it improves productivity
for facial performance because it allows animators to have a close
overview of the look of the eyes downstream in the pipeline, thus
reducing iteration cycles between lighting and animation depart-
ments, in particular for shots where the camera angle has an impact
on the look of the eyes.

2 RELATEDWORK
Simulating refraction in a rasterization graphics pipeline is com-
monly achieved through screen spacemethods involving two render
passeswith a depth and a color buffer [Tipprasert and Kanongchaiyos
2006]. These approaches are limited as they can lead to artifacts, and
are unsuitable for the Maya VP2 rendering pipeline because han-
dling multiple render targets can only be achieved at the renderer
level, while we want to manage it at the object level.

In our initial approach, we assumed the iris and pupil to form
a circular plane, allowing us to estimate the refraction ray inter-
sections with the inner shapes and thus shade it instead of reading
screen buffers. This method has a high maintenance cost because
TDs must tweak the shader parameters per show per character
and update them whenever the model changes. It also needs extra
parameters to reflect the deformation of the inner shapes.

Many techniques exist for producing high-quality results in the
viewport, but either they suffer from the abovementioned issues,
or they do not integrate seamlessly into our pipeline. Overlaying
an offline render of the eyes in the viewport [Lopez and Richards
2017] could be a solution, but we could not achieve it in real-time
as the animator manipulates the rig. We want to generate it auto-
matically from the live scene and basic shading information, while
still providing reliable results and not impacting interactivity. Most
of all, it must support eye deformation to not put limits on the rigs
and address any animation style. We also wanted to leverage our

https://doi.org/10.1145/3532836.3536247
https://doi.org/10.1145/3532836.3536247
https://doi.org/10.1145/3532836.3536247


SIGGRAPH ’24 Talks, July 28-31, 2024, Denver, CO, USA A. Domon et. al.

deformation engine Bond [Baillet et al. 2020], which has native sup-
port for GPU processing, to keep the geometry data on the graphics
card from the deformation to the rendering stage. As its evaluation
relies on NVIDIA® CUDA® library, this was an opportunity to
simulate refraction with raytracing using NVIDIA® OptiX®, which
is also CUDA-based, thus facilitating data transfers for rendering.

3 PIPELINE INTEGRATION
The eye’s materials as defined by the surfacing department usually
involve complex shading networks designed to be ingested into our
in-house rendererGlimpse. The first challenge was to build a system
that turns this shading definition into a simpler representationmore
compliant for real-time rendering, and make it part of the asset’s
USD data so it can be consumed by downstream departments.

We created a new HDA in SideFX Houdini® that bakes the result
of our Glimpse shaders. We apply it to the cornea and iris materials
to extract an AOV for both diffuse and IOR channels. Assuming
refraction is mostly constant all over the surface, we retrieve the
value of the brightest pixel in the IOR’s AOV through Open Image
IO; thus simplifying the shading definition for real-time rendering.

We export this result as a USDPreviewSurface material assigned
to eye primitives with a “preview” purpose, which ensures this is
only used for viewport display, and not for final rendering. The
process then takes care of naming the material and textures. This
naming convention follows our Open Color IO rules, which in turn
tells consuming DCCs what colour space they are in. The USD
material and textures are then checked in along with other lookdev
data and follow the asset alongside its usual Lookdev pipeline.

4 MAYA INTEGRATION
At shot load time, our rigging framework translates the USDPre-
viewSurface’s diffuseColor and ior inputs into attributes in a custom
shader node assigned to all the eye shapes. On playback, we re-
trieve post-deformation vertex buffers generated by Bond for those
shapes, to make them available in the shader.

Geometry buffers can be copied directly into the appropriate
OptiX structure without transferring any memory from device to
host because Bond also uses CUDA for storing data. None of those
operations block the CPU application and can all be evaluated
concurrently with the rest of the rig.

We leverage Maya’s DG dirtiness engine to synchronize Bond
and OptiX. Any time a shape node bound to this shader is dirty, we
use Bond’s API to know if it has re-computed any of the involved
buffers since the last update, and if so, we specify which OptiX
component must be updated before the next draw call.

5 OPTIX IMPLEMENTATION
We build one Geometry Acceleration Structure (GAS) per eye shape
from the deformed positions and triangle indices Bond buffers.
We associate each GAS with the Bond shape’s transform to create
Instance Acceleration Structures (IAS), defining what to raytrace
to the OptiX programs. Vertex normals/colors/UVs buffers and
shading data are provided to OptiX through a Shader Binding Table.
We also upload the viewport camera and lights using a launch
parameter to cast the primary rays appropriately and compute the
proper shading. This process is illustrated at the top of Figure2.

Figure 2: Vertex buffers and USD shading data are uploaded
to OptiX. The resulting render is sampled in the VP2 shader.

At each VP2 draw call, we launch the OptiX pipeline to invoke
the raytracing on the GPU. The ray generation program casts one
ray per pixel in a grid with the same resolution as the current
viewport. In the ray-hit program, if the hit occurs on a refractive
shape, we throw a new ray computed from Snell’s law using the
normal on the surface and the IOR defined by the asset’s USD data.
Otherwise, we calculate a Phong shading from the Maya viewport’s
lights and the surface normal on the intersection.

The host can then synchronize the GPU evaluation to retrieve the
render’s image as a CUDA buffer and make use of CUDA-OpenGL
interoperability to copy it directly into an OpenGL texture, which
is then sampled from the Maya VP2 rasterization shader as shown
at the bottom of Figure2. Not transferring this texture from device
to host at any stage of the process is crucial to avoid FPS drop.

6 RESULTS, LIMITATIONS AND FUTURE
WORK

We support Maya viewport features, such as multi-viewport, 2D
panning and zooming, film gate, and cached playback, allowing the
shader to integrate seamlessly into the animation workflow.

As we now integrate the post-deformation vertex data in the
shader, the result is correct, whatever the deformation applied to
the eyes, and it no longer requires any tweak if the eye model is
updated upstream in the pipeline.

We profiled multiple shots among three different shows and
noticed an FPS overhead of less than 2%, regardless of the number
of characters on the screen. For example, we measured a drop
of only 0.5 FPS on a complex shot with two animated characters
running at 30.4 FPS. GPU memory usage is about 12% higher, and
CPU memory is not impacted at all.

Limitations include unsupported textured IOR, limited support of
light types, and animators having to turn on the viewport Textured
mode. In the future, we plan to generalize the system to apply it to
other refractive shapes of the character, such as eyeglasses.

REFERENCES
Aloys Baillet, Josh Murtack, Hongbin Hu, Haoliang Jiang, and Michael Quandt. 2020.

Bond: USD-Integrated Hybrid CPU, GPU Deformation System. In ACM SIGGRAPH
2020 Talks (Virtual Event, USA) (SIGGRAPH ’20). Association for Computing Ma-
chinery, New York, NY, USA, Article 34, 2 pages. https://doi.org/10.1145/3388767.
3407324

Pilar Molina Lopez and Jake Richards. 2017. The eyes have it: comprehensive eye
control for animated characters. In ACM SIGGRAPH 2017 Talks (Los Angeles, Cal-
ifornia) (SIGGRAPH ’17). Association for Computing Machinery, New York, NY,
USA, Article 24, 2 pages. https://doi.org/10.1145/3084363.3085061

Nuttachai Tipprasert and Pizzanu Kanongchaiyos. 2006. An interactive method for
refractive water caustics rendering using color and depth textures. 423–428.

https://sites.google.com/site/openimageio/
https://sites.google.com/site/openimageio/
https://opencolorio.org/
https://doi.org/10.1145/3388767.3407324
https://doi.org/10.1145/3388767.3407324
https://doi.org/10.1145/3084363.3085061

	Abstract
	1 Introduction
	2 Related work
	3 Pipeline Integration
	4 Maya Integration
	5 Optix Implementation
	6 Results, Limitations and Future Work
	References

