
Multithreading USD and Qt: Adding Concurrency to Filament
Jonathan Penner

Animal Logic
Vancouver, BC, CA

jonathan.penner@animallogic.ca

Jakub Jeziorski
Animal Logic

Vancouver, BC, CA
jakub.jeziorski@animallogic.ca

Kevin Russell
Animal Logic

Sydney, NSW, Australia
kevinr@al.com.au

Figure 1: From left to right, an ALab promotional video shot final comp, the ALab promotional video shot in Filament, an
opening shot from Leo final comp, the Leo opening shot in Filament.

ABSTRACT
As production scene complexity and CPU core count increase, the
performance of software used to interact with the scenes may not
scale accordingly. Filament is Animal Logic’s in-house, USD-based,
PyQt lighting DCC, and a key area for improving Filament was
increasing performance and responsiveness when working with
large production scenes. USD, Qt, and Python all have their own
multithreading considerations, requiring coordination between all
three to work well. Filament was updated to parallelize USD stage
processing to reduce processing time, as well as adopt asynchrony
to keep the main GUI thread unblocked, greatly improving artist
experience. These updates demonstrate a model for multithreading
USD stage access to improve other applications working with USD.

CCS CONCEPTS
•Computingmethodologies→Concurrent computingmethod-
ologies; Graphics systems and interfaces.

KEYWORDS
USD, Qt, Python, Multithreading, Parallel Computing, UI

ACM Reference Format:
Jonathan Penner, Jakub Jeziorski, and Kevin Russell. 2024. Multithreading
USD and Qt: Adding Concurrency to Filament. In Proceedings of Digital
Production Symposium 2024 (DigiPro ’24). ACM, New York, NY, USA, 4 pages.
https://doi.org/XXXXXXX.XXXXXXX

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
DigiPro ’24, July 27, 2024, Denver, CO
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN XXXX-XXXX-X/24/06. . . $15.00
https://doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION
Since 2018 Animal Logic has been using its in-house DCC Filament
[Agland et al. 2020] for lighting feature animation and VFX produc-
tions, such as Peter Rabbit 2, DC League of Super Pets, and Leo. It
is primarily written in Python with PyQt, along with supporting
C++ code for heavy-lifting processing tasks. Artists author node
graphs to make a series of changes to a USD stage, such as creat-
ing lights and setting up render passes, similar to applications like
Katana. These node graphs are “executed” by Grip, a C++ library
with Python bindings. At this point views, models, and other Fil-
ament code connected to the stage (referred to as “stage clients”),
update to display the new state of the stage.

While the feature set in Filament grew to accommodate each
production’s needs, its single-threaded USD stage processing meant
artist-initiated changes would make the user interface unresponsive
while the changes were processed. As a result, this processingwould
often be slow to complete. During the production of Leo, Filament’s
stage processing was parallelized to improve performance, and
later made asynchronous to keep the user interface responsive.
This posed some challenges, as USD, Qt, and Python each interact
with multiple CPU threads differently.

2 CONCURRENT USD
The internals of USD, such as its stage composition, are heavily
parallelized. Its threading model allows for multiple threads to read
from the stage, or have one thread writing to the stage, meaning
threads cannot read from the stage at the same time as another
thread is writing to it. Since traditional threading primitives like
locks and mutexes are not exposed through USD’s API, a different
approach is needed for managing concurrent stage access.

NVIDIA’s Omniverse [2021] approaches concurrency with its
𝐹𝑎𝑏𝑟𝑖𝑐 library, which provides a thread-safe scene representation
generated from underlying USD data. This approach works well
since USD itself is isolated from the concurrency; however it is only
available within Omniverse.

https://orcid.org/0000-0003-4653-5396
https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX


DigiPro ’24, July 27, 2024, Denver, CO Penner, Jeziorski, and Russell

Figure 2: Stage Access in 𝐴𝐿_𝑈𝑆𝐷𝐶ℎ𝑎𝑛𝑔𝑒𝐵𝑙𝑜𝑐𝑘

We developed an alternative approach with an internal C++
library called 𝐴𝐿_𝑈𝑆𝐷𝐶ℎ𝑎𝑛𝑔𝑒𝐵𝑙𝑜𝑐𝑘 to coordinate different stage
clients acrossmultiple threads.𝐴𝐿_𝑈𝑆𝐷𝐶ℎ𝑎𝑛𝑔𝑒𝐵𝑙𝑜𝑐𝑘 handles stage
access by defining two types of blocks of time: “write blocks” and
“read blocks”. While a write block is open, no threads are allowed
to read data from the stage. Conversely, while a read block is open,
threads are allowed to read data from the stage, but no thread is
allowed to modify it.

This simple approach means multiple threads can access the
stage without violating USD’s threading rules. If a stage client
wants to modify the stage, it first checks if a write or read block
is already open, and if not, opens a new write block, performs its
changes, and then closes the write block. 𝐴𝐿_𝑈𝑆𝐷𝐶ℎ𝑎𝑛𝑔𝑒𝐵𝑙𝑜𝑐𝑘

aggregates all the USD ObjectsChanged change notices that were
sent during the write block to create a minimal change list of all
the affected prim paths.

𝐴𝐿_𝑈𝑆𝐷𝐶ℎ𝑎𝑛𝑔𝑒𝐵𝑙𝑜𝑐𝑘 then opens a read block to let stage clients
update themselves based on that minimal change list with the
new state of the stage. This prevents other clients from further
modifying the stage during the updates. The read block closes, at
which point clients are free to modify the stage again in a new write
block. Custom TfNotices are registered for write and read block
open and close events and dispatched using USD’s synchronous
TfNotice framework, letting clients not only check for stage access
on-demand but also respond as the events happen.

To allow for parallelism, stage clients written in C++ can reg-
ister as “readers” with 𝐴𝐿_𝑈𝑆𝐷𝐶ℎ𝑎𝑛𝑔𝑒𝐵𝑙𝑜𝑐𝑘 and provide an up-
date callback function. When a read block opens, each registered
reader’s update callback is called in separate threads with the min-
imal change list, and the read block closes when each callback
has finished. This means updating multiple stage clients is only
as slow as the slowest client instead of the sum of each of them.
Since the read block safeguards the stage from new modifications,
making this process asynchronous is simple by handling the read
block in another background thread, leaving the main GUI thread
responsive.

3 CONNECTING QT
Qt’s main restriction on multithreading is that any operation mod-
ifying visual items must run on the main GUI thread. This poses
challenges for widgets that need to respond to TfNotices that may
be sent from other threads. Fortunately, Qt’s signal and slot mech-
anism is designed with threading in mind. If an object emitting
a signal is on the same thread as an object connected to it, the
corresponding slot will be called synchronously. If the objects are
on different threads, Qt will automatically post an event to the
receiver thread’s event loop to call the slot when the thread is next
processing events.

In Filament, widgets and QObject stage clients use intermediate
objects that register with the TfNotices. When a notice is sent,
such as a write block open event, the intermediate object forwards
the contents of the notice to the widgets using a Qt signal, letting Qt
automatically handle thread switching using its event loops. This
leaves each widget to safely update on the main thread even when
the stage updates come from other threads.

While write and read blocks are open, Filament is put into a “sus-
pended” state, preventing modifications to the stage but remaining
responsive. Visual items that modify the stage (such as viewport
manipulators, certain context menu actions, and attribute editor
fields) are disabled.

The following is an example of the entire process. Filament’s
outliner view is a PyQt QTreeView and QAbstractItemModel, with
its model populated by a C++ scene index.

• When awrite block opens, the outliner’s intermediate QObject
forwards the notice to the view and model through signals.

• The view displays a loading indicator and disables any visible
stage-modifying context menus, while the model stores any
persistent indexes and stops reading new data from the stage.

• Once the write block closes and the read block opens, the C++
scene index—which is registered as an𝐴𝐿_𝑈𝑆𝐷𝐶ℎ𝑎𝑛𝑔𝑒𝐵𝑙𝑜𝑐𝑘

“reader” — will update its data in parallel on background
threads.



Multithreading USD and Qt: Adding Concurrency to Filament DigiPro ’24, July 27, 2024, Denver, CO

Figure 3: Filament’s outliner displaying partially loaded
prims while a stage update is in progress.

Figure 4: Filament’s viewportmanipulators enabled (left) and
disabled (right) while a stage update is in progress.

• Once the index has finished updating, the outliner’s model
refreshes persistent indexes and emits a layoutChanged sig-
nal to the tree view, and the view displays the new stage
data and hides the loading indicator.

• When the read block closes, the view re-enables any previ-
ously disabled context menus.

This process lets stage modifications and updates happen on
background threads without causing incorrect concurrent USD
stage access.

4 UNLOCKING PYTHON
Python is limited to single-threaded execution by its Global Inter-
preter Lock (GIL). While key aspects of Filament written in C++
(such as its outliner scene index) process updates in background
threads, actions that are initiated from Python still block the main
thread. Filament uses Grip’s Python bindings to modify the stage

and create artists’ lighting setups, but executing those changes
would still run on the main thread.

A goal of adding concurrency was to make Grip execution asyn-
chronous on a background thread. As a starting point, the calling
Python code to start execution in Filament was moved to a QObject
on a separate background QThread. Even though technically this
ran Grip execution on a separate thread, the GIL prevented all other
Python threads from running until execution completed, thereby
freezing the user interface.

Fortunately, sinceGrip execution internally doesn’t access Python
objects, it can safely call Python’s C API to unlock the GIL. With the
calling Python code on a separate thread and the GIL unlocked, the
main thread is free to process Python code and events while Grip
execution runs, making the user interface stay responsive. Changes
to the Grip graph during updates are queued to be executed once
the current set of updates have finished, meaning artists don’t need
to wait for updates to finish to continue making changes to the
graph. This execution also happens inside a write block, keeping
the USD stage protected from concurrent access.

5 RESULTS
When concurrency was originally added to Filament, we observed
an average 4x speedup in USD stage update time. Some scenes on
Leo were up to 7x faster, with the update time in one case going
from roughly 60 seconds down to 8 seconds.

Since concurrency was added we’ve made other optimizations
and re-architected some key aspects. The previous performance
difference, with and without the parallelism, isn’t reproducible, but
overall Filament runs even faster than before, in addition to the
updates happening on background threads. The primary benefit of
our concurrency approach is asynchrony.

Objectively, Filament is muchmore responsive than before. There
is a substantial improvement in the time the main thread is blocked
during updates with and without concurrency. Since graph changes
during updates get queued, artists are still able to change their
graph and work while updates are happening, as well as use views
like the outliner and viewport.

Table 1: Leo - Typical Production Shot - 2.2 Million Prims.
Without concurrency is entirely blocked.

Metric With
Concurrency
Time Blocked

With
Concurrency
Total Time

No
Concurrency
Total Time

Average 0.371s 11.744s 15.604s
Min 0.239s 10.468s 11.931s
Max 0.371s 12.878s 18.544s

Table 1 shows that an average production shot on Leo with 2.2
million prims, the main thread is blocked for only a few hundred
milliseconds during the rest of the Filament updates. Since stage
clients update in parallel, the total time for updates to finish is
faster too. The total update time is also less variable than when the
updates are processed without concurrency.

Table 2 shows results for a production shot with twice the num-
ber of prims. The performance gain is less than the typical case,



DigiPro ’24, July 27, 2024, Denver, CO Penner, Jeziorski, and Russell

Table 2: Leo - Heavy Production Shot - 4.4 Million Prims.
Without concurrency is entirely blocked.

Metric With
Concurrency
Time Blocked

With
Concurrency
Total Time

No
Concurrency
Total Time

Average 1.370s 21.981s 24.586s
Min 1.015s 19.909s 21.633s
Max 1.658s 23.209s 33.312s

Table 3: ALab Promotional Video - Typical Shot - 242k Prims.
Without concurrency is entirely blocked.

Metric With
Concurrency
Time Blocked

With
Concurrency
Total Time

No
Concurrency
Total Time

Average 0.2090s 0.549s 0.590s
Min 0.178s 0.515s 0.549s
Max 0.234s 0.599s 0.631s

but still has the great benefit of having the user interface still be
responsive as the updates are being processed.

Table 3 shows that when the scene is small enough, updates with
concurrency are sometimes slower than processing the updates
without concurrency. When multiple clients update with their own
parallelism there is noticeable overhead of task and thread switch-
ing when they run simultaneously. However, if task management
were more efficient, and the time to process theoretically went
down to about 0.4s, the perceptual difference between 0.4s and 0.5s
would not be noticeable.

Subjectively, the reception from the lighting artists has been ex-
tremely positive. Artists are freer to work at a faster pace without
needing to wait for Filament to finish all processing before being
able to make new changes. Before concurrency was added and the
main thread blocked, artists would sometimes assume the applica-
tion had crashed and force-quit their session, unnecessarily losing
work. Now they have more confidence that Filament is running
correctly; they don’t waste time relaunching the application and
reopening their scene.

Most significantly, artists have said that they are happier working
in Filament and enjoy the process more than they did in Filament
before concurrency. They have fewer obstacles and slowdowns that
impede their creative flow so they can focus on the art of lighting.
As developers, we can get focused on numbers and performance
statistics, when in reality the underlying goal is to let artists be
artists.

6 DISCUSSION
The approach of concurrency in Filament requires all stage clients
to cooperate with any open write or read blocks. It’s up to the
clients to follow the rules instead of preventing bad access at the
API level, like the approach in NVIDIA’s Fabric API, or other con-
currency strategies such as actor models. That said, the approach is

straightforward, both conceptually and practically, in the develop-
ment of 𝐴𝐿_𝑈𝑆𝐷𝐶ℎ𝑎𝑛𝑔𝑒𝐵𝑙𝑜𝑐𝑘 and retrofitting Filament’s different
stage clients to support concurrency.

Taking any synchronous system and making it asynchronous
introduces new challenges for developers. Modern programming
language features such as async/await aim to ease the mental bur-
den of managing task queues or asynchronous callback functions.
In the future we would like to explore integrating async/await to
let clients request a write or read block and “await” for any cur-
rent changes to complete, letting running threads yield execution
instead of blocking entirely.

7 CONCLUSION
Internally at Animal Logic, Filament’s concurrency exceeded ex-
pectations for application responsiveness, raising our standards to
a much higher level. Artists spend less time waiting to see their
changes and have a better experience overall working in Filament,
making it easier to work with the increasingly large scenes involved
in productions. Our hope is that the lessons and techniques adopted
by Filament can be used similarly to improve user experience in
other applications within and outside of Animal Logic.

ACKNOWLEDGMENTS
We would like to thank Steve Agland for encouraging this idea
and pursuit of making Filament more responsive; Curtis Black,
Basile Fabroni, and Andy Chan for their guidance in developing
𝐴𝐿_𝑈𝑆𝐷𝐶ℎ𝑎𝑛𝑔𝑒𝐵𝑙𝑜𝑐𝑘 ; and Rodrigo Janz, Herbert Heinsche, Eti-
enne Marc, Joshua Nunn, and the rest of the lighting team for
testing these substantial changes.

REFERENCES
Steve Agland, Jakub Jeziorski, Manuel Macha, Simon Bunker, Francesco Sansoni,

and Eoin Murphy. 2020. Grip and Filament: A USD-Based Lighting Workflow. In
ACM SIGGRAPH 2020 Talks (Virtual Event, USA) (SIGGRAPH ’20). Association for
Computing Machinery, New York, NY, USA, Article 33, 2 pages. https://doi.org/10.
1145/3388767.3407350

NVIDIA. 2021. Omniverse Website. Retrieved May 1, 2024 from https://www.nvidia.
com/en-us/omniverse/

https://doi.org/10.1145/3388767.3407350
https://doi.org/10.1145/3388767.3407350
https://www.nvidia.com/en-us/omniverse/
https://www.nvidia.com/en-us/omniverse/

	Abstract
	1 Introduction
	2 Concurrent USD
	3 Connecting Qt
	4 Unlocking Python
	5 Results
	6 Discussion
	7 Conclusion
	Acknowledgments
	References

