
Nucleus: A Design System for Animation and VFX Applications
Jon-Patrick Collins

jonc@al.com.au
Animal Logic

Sydney, NSW, Australia

Anno Schachner
annos@al.com.au
Animal Logic

Sydney, NSW, Australia

Figure 1: FilmStudio, an application for authoring USD-based assets, developed using the Nucleus Design System.

ABSTRACT
We describe a plugin-based architecture for developing component-
based Qt applications for animation and visual effects, and discuss
the benefits this approach offers in terms of code reuse, stability and
consistency. We introduce an Application Maturity Model quality
metric to characterize a set of best practices, design patterns and
frameworks for developing complex interactive applications.

CCS CONCEPTS
• Computing methodologies→ Graphics systems and inter-
faces.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
DigiPro ’24, July 27, 2024, Denver, CO
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-XXXX-X/18/06
https://doi.org/XXXXXXX.XXXXXXX

KEYWORDS
Application, PyQt, Python, Qt, UI, UX, VFX, Workflow

ACM Reference Format:
Jon-Patrick Collins and Anno Schachner. 2024. Nucleus: A Design System
for Animation and VFXApplications. In Proceedings of The Digital Production
Symposium (DigiPro ’24). ACM, New York, NY, USA, 10 pages. https://doi.
org/XXXXXXX.XXXXXXX

1 INTRODUCTION
Developing complex interactive software applications is non-trivial.
In a typical animation or VFX studio context, this is even more so,
due to factors that include heterogeneous craft groups working in
a decentralized manner, tight production pressures with limited
opportunities for developing polished products, and possibly fewer
software architects available for such development.

Over the past two decades, the animation and VFX community
has witnessed the emergence of Qt as the cross-platform user-
interface application framework of choice, superseding the use of
other frameworks such as wxWidgets, GTK and the older, propri-
etary UI toolkits shipped with common digital content creation
(DCC) applications.

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX


DigiPro ’24, July 27, 2024, Denver, CO Collins et al.

The emergence of Qt as an industry standard has provided an
opportunity to move beyond the earlier fragmentation of UI tool-
ing, allowing animation and VFX studios to concentrate efforts by
targeting a single framework. Nevertheless, application develop-
ment with Qt has its own challenges, requiring a degree of mas-
tery of design patterns including model-view-controller (MVC),
event broadcaster-subscriber and application orchestration. The Qt
ecosystem includes over 2000 classes and is potentially daunting to
developers without significant UI development experience, leading
to poor choices of design patterns and limited use of the full Qt
feature set.

Moreover, Qt applications developed by individual, autonomous
craft groups (at least in our experience) typically follow Conway’s
Law [7]: collections of highly customized, tailor-made solutions
that are difficult to reuse, leading to duplication of effort, a lack of
design cohesion and reduced opportunities for collaboration.

At Animal Logic, we have experienced these challenges first-
hand, and responded with the development of a range of best prac-
tices, design patterns and frameworks to successfully leverage the
best of Qt application development in a fast-paced, distributed,
multi-studio context. Ultimately, this journey led to the develop-
ment of the Nucleus Design System, a framework widely used at
Animal Logic, and the basis for many of our proprietary in-house
USD-based systems, including Forge™ [2], our Maya-based ani-
mation system; Filament™ [1], our standalone lighting system;
FilmStudio™ [4], our standalone USD asset authoring system; and
Plasma™ [5], our Nuke-based compositing system.

In this paper we describe the Nucleus Design System in the con-
text of an Application Maturity Model and key design decisions
en route. This Maturity Model concept takes its inspiration from the
Richardson Maturity Model [6] used to characterize Web services.

2 APPLICATION MATURITY MODEL
2.1 Level 0: Baseline Qt deployment
Early UI development at Animal Logic was largely ad hoc, piecemeal
and disorganized. User interfaces, where they existed at all, were
developed using either the host DCC toolkit, or wxWidgets. In 2010
we transitioned from Windows to Linux, and took this opportunity
to migrate our (relatively small) UI codebase to Qt.

Prefer PyQt where possible. Given our wide use of Python
in-house, we primarily adopted the Python PyQt bindings. This
allowed the widest-possible audience of developers to contribute to
our Qt-based applications. We also made selective use of the C++
Qt libraries, but mostly in contexts that already made heavy use of
C++ or where performance was critical. We preferred PyQt over
the alternative PySide for its more active ecosystem and product
support (at the time). We also preferred PyQt to the alternative
QML markup system for its more complete widget library, notably
for data-intensive widgets such as tree, list and table widgets, where
there were no full-featured QtQuick equivalents.

Prefer user-defined code to Qt Designer. We avoided the
use of the Qt Designer tool for building user-interfaces, finding
that the marginal short-term time gain in using rapid application
development (RAD) tools during the visual design process was
outweighed by the inability to maintain and refactor the resulting

.ui files. Qt Designer also hindered our deployment of custom Qt
widgets in place of default Qt widgets.

Following the deployment of Qt throughout a codebase, we can
consider it to be at Application Maturity Level 0. We achieved
this threshold around 2010.

2.2 Level 1: Unified visual design
With our applications migrated to Qt, an inevitable next step was
to start leveraging this consistent baseline in various ways. In par-
ticular, we elected to ensure consistency in the look-and-feel across
our various Qt-based tools.

Introduce UI-specific software package. At Animal Logic we
use the Rez packaging system for software management. Early on,
we introduced a new Rez package to house UI-related functionality.
This was an important first step in making it easy for disparate
teams to opt in to our shared UI library.

Define a shared Qt stylesheet. A powerful Qt mechanism is its
stylesheet system, in which a QSS stylesheet file is used to define the
look-and-feel of UI controls, in a similar manner to the CSS system
in Web design. Over time, we fine-tuned a customized in-house

Figure 2: Icon Gallery browser highlighting a sample of the
shared library of 500+ icons available. Icons may be program-
matically colorized, highlighted and disabled, as illustrated
with this ProductionExplorer widget example.



Nucleus: A Design System for Animation and VFX Applications DigiPro ’24, July 27, 2024, Denver, CO

design, largely based on a need to move from the default dark-on-
light Qt theme to a light-on-dark theme more suited to animation
and VFX applications. Once complete, we encouraged the use of
this stylesheet through all Qt-based tools to build up a recognizable
Animal Logic brand by shipping this with the new UI package. This
was a minimal-cost choice that nevertheless had a large benefit: the
emergence of a visually cohesive software collection.

Automate QSS generation. QSS files make extensive use of
hard-coded constants defining colors, fonts and many other at-
tributes. We quickly determined that moving these constants to
their own Pythonmodule and auto-generating QSS stylesheets from
a baseline template reduced duplication, avoided inconsistencies
and moreover allowed us to generate a wide family QSS variants.
This allowed us to preserve a consistent in-house brand but still
make concessions for certain contexts such as the specific design of
a given host DCC application, or for different display resolutions.

Introduce common icon library. A key goal was to create
a strong visual design language with a high degree of design con-
sistency, where common studio-wide concepts such as "shot" or
"character" have consistent visual representations across different
UIs. Initially, our applications either shipped their own icon re-
source files (with typically inconsistent design), or simply did not
use icons at all. We introduced a library of 16x16 PNG and SVG art-
works with an associated Python API to allow these to be accessed
as QImage, QPixmap or QIcon objects at runtime, with support for
caching and various kinds of transformation (resizing, grayscale,
colorization). We primarily adopted an iconographic design style
in order to allow contributions from many developers, and defined
these mostly as white-on-transparent PNG files, allowing for run-
time colorization.

Following the visual design unification throughout a Qt codebase,
we can consider it to be at Application Maturity Level 1. We
achieved this threshold around 2012.

2.3 Level 2: Unified QWidget ecosystem
With the widespread adoption of the UI package throughout our
codebase, it emerged as a natural home for custom widgets. Over
time we added hundreds of custom widgets to this library. Further-
more, by utilizing the Facade design pattern [8], it became the
primary conduit for access to all Qt classes.

Curate a shared library of custom widgets. Initially, our
Qt applications that required custom widgets would define these
directly within their own codebases. In some cases, these might be
subclasses with additional or overridden methods, signals or slots;
at other times these might be composite widgets comprising many
individual widgets. In both cases, we made a concerted effort to
migrate these into the UI package in order that they emerged as
reusable widgets, with an easy instantiation pattern such as myObj =
ui.AdvancedSearchBar(). By making these QWidget classes easy
to find, easy to instantiate and easy to develop, our shared widget
library built development momentum. We encouraged developers
to contribute to this library, even in cases where their application
may be the only consumer of a specific custom widget.

Unify built-in and custom widgets. With the success and
widespread rollout of our UI package, we made the leap to import
all built-in Qt classes via the same central module and remap these

Figure 3: UI Testbed browser highlighting a sample of the
shared library of 100+ widgets available, with sample usage
illustrated with the New Entity dialog. Both user-interfaces
utilize the shared QSS stylesheet, colors and fonts.

using our in-house convention of adopting the Qt name without the
Q- prefix. Thus, myObj = ui.ComboBox() would be the preferred
pattern to create our flavor of QComboBox. With this layer of indi-
rection we were able to gradually introduce and modify subclasses
of standard widgets at any point without disrupting client code
(after the initial code conversion). Importantly, it erased the distinc-
tion between “standard Qt” widgets and “custom Qt” widgets by
making the creation patterns identical. Furthermore, it allowed us
to flatten out potentially deeply-nested Python package paths into
a simple calling convention, with all widgets directly accessible via
our UI facade module.

Following the deployment of a unified QWidget ecosystem and
visual design language throughout a Qt codebase, we can consider it
to be atApplicationMaturity Level 2. We achieved this threshold
around 2014.

2.4 Level 3: Dependency inversion pattern
Widgets can be characterized as data-light or data-heavy: light-
weight widgets such as QComboBox may be readily populated at
creation time, whereas heavyweight widgets such as QTreeWidget



DigiPro ’24, July 27, 2024, Denver, CO Collins et al.

Figure 4: PropertiesView, a complex custom QWidget that
supports inspection and modification of object attributes.
Utilizing the data source design pattern, this widget is used in
disparate contexts by injecting custom datasources as needed.
Example illustrates integration with a suite of representative
data sources, including USD and database objects.

have variable and potentially large datasets that can lead to sig-
nificant slowdowns when attempting to pre-populate their entire
datasets at creation time.

To ameliorate this, Qt provides a suite of the data-driven model-
view widgets such as QTreeView and QTableView that utilize the
Dependency Inversion design pattern [10]. This powerful pat-
tern, colloquially thought of as “Don’t call us—we’ll call you”, uses
an intermediate data model that acts as a dynamic data accessor on
a need-to-have basis. Whilst powerful, this category of widgets is
exceptionally difficult to use, which in practical terms limits their
real-world use. In our codebase, we found the correct use of these
critically-important widgets to be vanishingly small.

Simplified programming model for model-view widgets.
We identified QTreeView, QListView and QTableView as critical
widgets for our in-house Qt applications, and created custom sub-
classes (for example ui.TreeViewPlus and ui.ListViewPlus) that
ship with a powerful and simple pattern for registering row and
column data sources that make it comparatively trivial for clients
to utilize these widgets, with a much lowered barrier to entry, and

avoiding the complexities of the older implementations using the
QModelIndex class. This programming pattern has proved to be
popular with our developers, with widespread adoption. In turn
this has been instrumental in the development of our application
ecosystem, where large hierarchical datasets are ubiquitous.

Widespread adoption of dependency inversion. We dis-
covered that this pattern, and in particular the use of separate
data source classes to manage the flow of data between specific
business contexts and general-purpose QWidgets, is a very use-
ful abstraction. We subsequently developed many other complex
widgets, including comprehensive and reusable ui.GraphView and
ui.PropertiesView widgets, with the data source pattern allow-
ing these general-purpose widgets to be reused by many craft
groups for a range of disparate purposes. We strongly encouraged
developers building specific widgets for their needs to refactor these
widgets using the data source pattern, to encourage their reuse, and
to provide for a clear separation of concerns.

Following the deployment of dependency inversion, along with a
unified widget library and visual design throughout a Qt codebase,
we can consider it to be at Application Maturity Level 3. We
achieved this threshold around 2016.

2.5 Level 4: Command pattern
Animation and VFX studios will typically accumulate a large body
of disparate scripts, functions and systems. This functionality may
be opaque to discover, non-trivial to use, and hard to easily integrate
into other systems.We found that recasting such functionality using
the Command design pattern [9] was a critical early decision
that paved the way for the later Nucleus Design System.

Introduce commands.We introduced a Command base class
with methods such as doIt() and undoIt(), with a unique Com-
mand ID per command. Over time, we recast all artist-facing tools
and scripts by re-implementing these as commands, with their im-
plementations moved into the doIt() methods. We extended the
capabilities of commands to include optional typed arguments and
argument presets, as well as pre-execution argument resolution.
This process regularized and standardized hundreds of existing tools
and scripts, which was a major boon to the codebase. Moreover,
command execution became simplified; clients could now invoke
commands with only knowledge of their relevant Command IDs.

Introduce discoverability and registration.We added auto-
matic command discovery and registration to our command system,
also adding build-time command manifest creation for optimized
performance. Our Rez-based software packaging systemwas a good
fit for this work, as Rez packages can extend environment variables
(such as lists of system folders) such that the resolution of a given
software package will automatically ensure its commands are in-
jected into the command registry.

Introduce UI metadata and hinting. We added optional UI
metadata to commands, including display names, tooltips and icons.
Together with discoverability, this allowed us to create useful appli-
cations such as the Artist Tools palette, an auto-populated shelf
of discovered commands. The Artist Tools palette has been highly
successful, replacing many tediously maintained, inconsistent tool
shelves. We also added optional isVisible() and isEnabled()



Nucleus: A Design System for Animation and VFX Applications DigiPro ’24, July 27, 2024, Denver, CO

Figure 5: Artist Tools palette, an auto-populated collection
based on the automatic discovery, registration and UI gen-
eration of command plugins discovered in the currently-
resolved context. Note that the context menu actions illus-
trated are also implemented via the same command system.

command methods in order to allow commands to autonomously
determine whether they are available and usable in a given context.

Replace QActions with Command IDs. Whilst the command
patternwas initiallymotivated by seeking to develop an autonomous
Artist Tools palette, it quickly became apparent that commands
were exceptionally useful and clean ways to organize code. A key
insight was that we could utilize commands as the bedrock for all
our Qt applications: in place of hard-coded toolbars, menu bars and
context menus with their associated static QActions, clients could
instead nominate lists of Command IDs. At run-time we would find
these commands in the command registry, and use their UI hints to
determine settings for dynamically-created QActions.

The Command pattern creates an elegant separation of con-
cerns between developers building applications and developers
building their associated commands. As self-describing units of
functionality, commands can be readily shared and reused across
disparate applications. Calling code needs no explicit knowledge
of module import paths, since commands are invoked simply via
their Command IDs. Another useful side-effect is that if at runtime
a given command is unavailable, the associated QAction is simply
not created, making applications able to run in a wider range of
environments with elegant degradation.

Following the deployment of commands, dependency inversion,
a unified widget library and visual design throughout a Qt codebase,
we can consider it to be at Application Maturity Level 4. We
achieved this threshold around 2018.

3 NUCLEUS DESIGN SYSTEM
Despite a successful implementation of Maturity Level 4, recurring
issues emerged due to the inevitable complexity arising from ap-
plication size. In particular, building large interactive applications
required an inordinate amount of duplicated logic for managing the
creation and runtime state of user-interface elements; orchestrating
complex signal-slot chains was error-prone and difficult to reason
about; and the sharedwidget ecosystem itself did not prevent signifi-
cant code duplication and splintering, since more business-oriented,
higher-order controls would be regularly reinvented.

3.1 Level 5: Component plugin architecture
In 2018 we embarked on the next major phase of the Maturity
Model with the introduction of the Nucleus Design System. In a
nutshell, the Nucleus Design System reimagines applications using
a plugin-based architecturewith application-level configuration
replacing application-level code.

Generalized MVC plugin system. Our key insight was to
ask: What makes one application distinct from another? Our an-
swer was: a specific collection of models, views and commands,
and the way these are orchestrated. From this starting point, we
determined that we could generalize our plugin-based command
system and extend this design pattern to support the full range of
components necessary for an entire model-view-controller (MVC)
framework: Models, Views and Commands, along with additional
plugins such as ToolbarControls and MenuBuilders. All such Nu-
cleus plugins are characterized by a unique Nucleus ID, such as
Nucleus.Model.Maya.Selection or Nucleus.View.Properties.

Single configurable application. We determined that in place
of repeatedly developing separate Qt applications (with their in-
evitable code duplication, inconsistency and redundant effort) we
could instead implement a single canonical Qt application (the "core
Nucleus application") and handle distinct target application require-
ments by injecting different application configuration objects into
the core application at startup. Application configurations are a
set of mostly static key-value pairs that (amongst other things)
nominate Model IDs and View IDs of interest. The core Nucleus
application then takes responsibility for the correct discovery, in-
stantiation and organization of these plugins. Other configuration
settings similarly define toolbar controls, menus, splashscreens,
window icons and related application infrastructure.

Centralized event system. Nucleus applications implement
an event system that encapsulates and generalizes the lower-level
Qt signal-slot system. Models and views can choose to elevate a
QSignal by re-broadcasting it as a Nucleus event characterized by
a unique Event ID with optional arguments. Nucleus application
configurations then manage application control flow by nominat-
ing lists of Command IDs to be executed in response to specific
Event IDs. For example, a data model could emit an event when
its internal data is reloaded; this would trigger a sequence of com-
mands that would reload application views that have some interest
in the updated data. This essentially allows generic and modular,
but unrelated, components to react to each other without having
any knowledge of each other.



DigiPro ’24, July 27, 2024, Denver, CO Collins et al.

Figure 6: Filament, our flagship proprietary lighting system, fully developed using the Nucleus Design System. This complex
application is built up from 17 Nucleus models and 25 Nucleus views, and observes 112 Nucleus events. The application
configuration defining interactions between the models, views, and events, including keyboard shortcuts and context menus, is
a single Python configuration module of just 1890 lines.

Following the deployment of a configuration-based MVC plugin
architecture to a Qt codebase that already uses commands, depen-
dency inversion, shared widgets and shared visual design, we can
consider it to be at Application Maturity Level 5. We achieved
this threshold around 2020.

3.2 Inspiration, results and discussion
The Nucleus Design System was primarily motivated by the need
to be able to design and develop useful functional components
independently of any applications in which they might ulti-
mately be used, and by the need for applications to be able to readily
specify the components they seek to use with essentially zero ef-
fort. A key inspiration was the Eclipse Integrated Development
Environment [3], which uses a similar architecture whereby all
functionality is expressed via plugins. To our knowledge, Nucleus
represents the first use of this pattern for Qt application creation.

Nucleus has proven to be a successful design pattern, and has
allowed a small development team to build and maintain a large
collection of complex, interactive applications. Indeed, benefits have
accrued that were not immediately apparent when the design was
initially considered.

Rich component ecosystem. A component-based approach to
application design radically improves reusability, as the very act
of creating a Nucleus component (such as a specific view) for one

craft group makes it effortlessly reusable by other groups. Over
time, this has created a rich ecosystem of reusable components. As
one example, we now ship various views (such as the Script Editor
view and Profiling view) as standard for all Nucleus applications.

Stability and consistency. With a single canonical Nucleus
application, we are able to consolidate and enhance many otherwise
disparate approaches to a wide range of Qt application implementa-
tion details. To take view management as one example, we can now
handle layout persistence, user-defined named layouts and view
menu synchronization in a single centralized Nucleus core code-
base. Whereas previously, each application team was responsible
for these measures on a per-application basis, in the new Nucleus-
based paradigm a single team becomes responsible for the core
application and its associated UI management. This has proven to
be a major productivity boost and also led to significantly improved
stability and consistency amongst individual products.

Event orchestration. The Nucleus event system is integral
in tying together separate Nucleus components into a coherent
application. It acts as a single point of contact between event broad-
casting and handling. With all key events flowing through a single
function in the configuration, development, testing and debugging
is simplified. For our flagship applications, this centralized approach
has been especially helpful when tracing control flow issues and
understanding complex interdependencies between components.



Nucleus: A Design System for Animation and VFX Applications DigiPro ’24, July 27, 2024, Denver, CO

Figure 7: Application configuration (light blue) nominating certain models, views and event-command relationships of interest;
Application instance (dark blue) initialized with this configuration; resulting Qt application comprising a main window with
three dock widgets housing the three specified views.

Applications through configuration. By enforcing a pattern
whereby applications are configured aggregations of plugin com-
ponents, we essentially create "code-free applications". That is, all
functionality is expressed by reusable components and there is a
clear distinction between component authoring and application
authoring. Where applications need a specific flavour or variant
of an existing component, it becomes necessary to add this func-
tionality to the shared components, as opposed to writing custom
application-specific extensions. Over time, this allows the work of
any given team to benefit all teams: a rising tide floats all boats.

Low barrier to entry.More generally, the centralized and string-
based nature of application configurations make them very easy
to read and edit. This allows even inexperienced users to readily
create Nucleus applications.

3.3 Standalone and hosted modes
Initially, we developed two related Nucleus instantiation modes:
standalone mode and hosted mode.

Standalone Mode. Our baseline Nucleus architecture was built
for traditional, standalone applications that execute independently
of any given DCC. Standalone mode is used by various in-house
applications such as Filament, FilmStudio and RigStudio.

Hosted Mode.We also added support for hosted applications
that run in the context of DCCs such as Maya or Houdini. These
Nucleus applications utilize the same memory space as their host
applications, but run with their own main windows separate from
their host DCC main windows. Hosted mode is used by various
in-house applications such as AnimationStudio, Artist Tools Palette,
EnvironmentStudio, Forge, ModellingStudio, MultiShot and QCSta-
tion, all of which run hosted in Maya.

We introduced certainNucleusmodels that encapsulate aspects
of host DCCs such as their event and selection systems to support
tight integration between the Nucleus application and the DCC
application when running in hosted mode. Otherwise, the same
Nucleus application configuration pattern is used in both modes.

4 NUCLEUS 2.0
Recurring feedback from our Nucleus 1.x clients was the desire
to run Nucleus applications more tightly integrated within
their host DCCs. Specifically, this would see Nucleus applica-
tions shipped without their own main windows, and instead with
their views directly docked into the host DCCmain window instead.
Likewise, their other UI elements such as menus and toolbars would
also be injected into the host DCC main window. The motivation
was to create more unified UI/UX with tighter use of screen real
estate, and workflows more coupled with the expectations of users.

4.1 Early work
We explored several prototypes of an embedding pattern in an
attempt to address tighter host application integration, focusing
on our key DCCs for modelling, layout and animation (Autodesk
Maya™); surfacing and procedural effects (SideFX Houdini™); imag-
ing and compositing (Foundry Nuke™); editorial reviews (Autodesk
RV™) and USD asset introspection (Pixar Animation USDView™).
A key challenge is that DCCs themselves have different levels of
integration with Qt.

Native Qt. Some applications, such as RV and USDView, are
natively developed in Qt. These are the easiest applications to tar-
get for a Nucleus embedded mode: we have direct programmatic
access to their QMainWindow objects and can directly inject our
QDockWidgets into these.



DigiPro ’24, July 27, 2024, Denver, CO Collins et al.

Figure 8: Nucleus runtime ecosystem, comprising a plugin registry of Nucleus components representing models and views,
another registry of Nucleus commands, and a central Nucleus application instance. Models and views broadcast Event IDs; these
are intercepted by the Nucleus application, which maps these to a sequence of Command IDs and executes these commands
synchronously or asynchronously, depending on the configuration. Commands in turn may then update model and view state.

Backports to Qt. Some applications, such as Maya and Nuke,
were not originally developed in Qt, but in recent years have been
rewritten for Qt. Nevertheless, they ship with proprietary layout
management systems that add some complexity when integrating
Nucleus components, as there is a layer of indirection between
client code and the DCC user-interface Qt objects.

Non-Qt. Some applications, such as Houdini, are not written
in Qt at all. They may still offer partial extensibility: for example,
it is possible to register Houdini panes that encapsulate Nucleus
views, but other aspects of the Houdini user-interface are less open
to runtime modification.

In order to successfully target this wide range of DCCs, we first
developed a Layout Engine system with DCC-specific extensions
to gracefully handle the different capabilites of each DCC. For
example, a toolbar command specified by a Nucleus application
may be instantiated as an actual QToolButton in RV, but as a shelf
script in Houdini. Likewise, a given Nucleus view may be docked
in Maya using the MayaQWidgetDockableMixin class, whilst in
Houdini it might use the equivalent hou.Pane class.

It is important to note that Nucleus offers many features that
are not supported in all host applications; in select cases we are

required to offer a reduced scope of functionality as needed to best
suit the target, using a graceful degradation approach.

4.2 Level 6: Embedded mode
In early 2024, we released Nucleus 2.0 with full support for Em-
bedded Mode applications in our target DCCs, using the Layout
Engine system internally. A compelling feature of this update is
that Nucleus configuration authors can work as before, entirely
agnostic to the specific mechanisms needed to inject their ap-
plications into host DCCs. We treat these mechanisms as private
implementation details of the framework.

Once again, such separation of concerns confers a range of
benefits. Nucleus applications authored for standalone mode, for
example, will work automatically in embedded mode without the
need to rework these. Moreover, by centralizing the specific logic
needed to integrate into a given DCC entirely with the Layout
Engine system, we can readily upgrade this logic without needing
to re-release any client code.

Following the deployment of a configuration-based MVC plugin
architecture with support for standalone, hosted and embedded
modes, along with commands, dependency inversion, shared wid-
gets and shared visual design, we can consider a Qt codebase to be



Nucleus: A Design System for Animation and VFX Applications DigiPro ’24, July 27, 2024, Denver, CO

Figure 9: Various Nucleus 2.0 applications running embedded within host DCCs. Illustrated are Plasma, running within Nuke,
and RVWorkshop, running within RV. We have fine-tuned our standard QSS stylesheets to incorporate some elements of host
DCC look-and-feel to better integrate visually; a case in point is the orange selection color used by Plasma.

at the peak level of our model, Application Maturity Level 6. We
have (provisionally) achieved this threshold as of 2024.

4.3 Results and discussion
The development of Nucleus 2.0 was not without its challenges:
Nucleus had become a widely-used framework and it was critical
to avoid regressions or interfering with production.

Initial work focused on treating embedded mode as a special case,
leading to a large bifurcation in the Nucleus codebase with multiple
parallel class hierarchies. After some trial-and-error we gained a
key insight: redefine embedded mode as the standard case, and
treat standalone and hosted modes as special cases in which the
embedding target is simply a QMainWindow of our own creation.
This elegant reimagining of the problem unblocked development
and opened up a pathway towards a release of Nucleus 2.0.

Embedded mode has been rapidly adopted by a wide range of
our craft groups. With the framework in place, we have worked
with the Imaging team to develop the Plasma application for Nuke,
as well as the RVWorkshop application for RV. In parallel, we
have worked with the Procedural Assets and FX team to develop
the Alchemy application for Houdini, and with the Assets team to
develop USDWorkshop for USDView.

Migrating to embedded Nucleus can result in simplification
and modernization of existing codebases, particularly those that
rely on multiple DCC plugins as the basis for their functionality.
For example, USDWorkshop replaces the use of twelve separate

USDView plugins to achieve arguably a superior user experience;
even more compellingly, RVWorkshop was able to replace no less
than forty RV plugins with a single plugin.

5 FUTUREWORK
With the recent deployment of Nucleus 2.0, our current and future
work involves working closely with craft groups to ensure success-
ful embedded mode integrations with all our target platforms.

We continue to work on stability and performance, as well as
additional features such as a command-line variant; improved sup-
port for asynchronous startup; migration to scalable SVG icons;
improved end-user documentation; and also assisting in the devel-
opment of a wider range of Nucleus components themselves.

We may potentially also transition to PySide, as this tends to
be the preferred standard Qt Python binding. Currently, a lack of
PySide Shiboken-related documentation is a limiting factor (relative
to the more complete PyQt SIP binding reference guide), but this
may change in future.

6 ACKNOWLEDGMENTS
The initial conception of a plugin-based Nucleus architecture was
inspired by discussions with Aloys Baillet in 2018.

Many developers have contributed to the Nucleus framework and
component ecosystem since then, with special thanks to Manuel
Macha, Jonathan Penner and Cesar Saez for their work in taking
this concept to a production footing. Special thanks also goes to



DigiPro ’24, July 27, 2024, Denver, CO Collins et al.

Oliver Dunn for earlier foundational work building up a common
visual design language.

Finally, a special thanks to Romain Maurer for championing this
initiative over many years.

REFERENCES
[1] Steve Agland, Jakub Jeziorski, Manuel Macha, Simon Bunker, Francesco Sansoni,

and Eoin Murphy. 2020. Grip and Filament: A USD-Based Lighting Workflow. In
ACM SIGGRAPH 2020 Talks (Virtual Event, USA) (SIGGRAPH ’20). Association
for Computing Machinery, New York, NY, USA, Article 33, 2 pages. https:
//doi.org/10.1145/3388767.3407350

[2] Aloys Baillet, Eoin Murphy, Oliver Dunn, and Miguel Gao. 2018. Forging a new
animation pipeline with USD. In ACM SIGGRAPH 2018 Talks (Vancouver, British
Columbia, Canada) (SIGGRAPH ’18). Association for Computing Machinery, New
York, NY, USA, Article 54, 2 pages. https://doi.org/10.1145/3214745.3214779

[3] Azad Bolour. 2003. Notes on the Eclipse Plug-in Architecture. (2003). Retrieved
May 7, 2024 from https://www.eclipse.org/articles/Article-Plug-in-architecture/

plugin_architecture.html
[4] Jon-Patrick Collins, Romain Maurer, Fabrice Macagno, and Christian Lopez Bar-

ron. 2022. USD at Scale. In The Digital Production Symposium (Vancouver, BC,
Canada) (DigiPro ’22). Association for Computing Machinery, New York, NY,
USA, Article 11, 6 pages. https://doi.org/10.1145/3543664.3543677

[5] Michael De Caria, Prethish Bhasuran, Mitja Müller-Jend, and Manuel Macha.
2023. Matte Painting a Brighter Future: A USD-Based Toolset in Nuke. In Proceed-
ings of the Digital Production Symposium (Los Angeles, CA, USA) (DigiPro ’23).
Association for Computing Machinery, New York, NY, USA, Article 10, 5 pages.
https://doi.org/10.1145/3603521.3604294

[6] Martin Fowler. 2010. Richardson Maturity Model. (2010). Retrieved May 10,
2024 from https://martinfowler.com/articles/richardsonMaturityModel.html

[7] Martin Fowler. 2022. Conway’s Law. (2022). Retrieved May 6, 2024 from
https://martinfowler.com/bliki/ConwaysLaw.html

[8] Wikipedia. 2023. Facade pattern. (2023). Retrieved May 6, 2024 from https:
//en.wikipedia.org/wiki/Facade_pattern

[9] Wikipedia. 2024. Command pattern. (2024). Retrieved May 6, 2024 from
https://en.wikipedia.org/wiki/Command_pattern

[10] Wikipedia. 2024. Dependency inversion principle. (2024). Retrieved May 6, 2024
from https://en.wikipedia.org/wiki/Dependency_inversion_principle

https://doi.org/10.1145/3388767.3407350
https://doi.org/10.1145/3388767.3407350
https://doi.org/10.1145/3214745.3214779
https://www.eclipse.org/articles/Article-Plug-in-architecture/plugin_architecture.html
https://www.eclipse.org/articles/Article-Plug-in-architecture/plugin_architecture.html
https://doi.org/10.1145/3543664.3543677
https://doi.org/10.1145/3603521.3604294
https://martinfowler.com/articles/richardsonMaturityModel.html
https://martinfowler.com/bliki/ConwaysLaw.html
https://en.wikipedia.org/wiki/Facade_pattern
https://en.wikipedia.org/wiki/Facade_pattern
https://en.wikipedia.org/wiki/Command_pattern
https://en.wikipedia.org/wiki/Dependency_inversion_principle

	Abstract
	1 INTRODUCTION
	2 APPLICATION MATURITY MODEL
	2.1 Level 0: Baseline Qt deployment
	2.2 Level 1: Unified visual design
	2.3 Level 2: Unified QWidget ecosystem
	2.4 Level 3: Dependency inversion pattern 
	2.5 Level 4: Command pattern

	3 NUCLEUS DESIGN SYSTEM
	3.1 Level 5: Component plugin architecture
	3.2 Inspiration, results and discussion 
	3.3 Standalone and hosted modes

	4 Nucleus 2.0
	4.1 Early work
	4.2 Level 6: Embedded mode
	4.3 Results and discussion

	5 Future work
	6 Acknowledgments
	References

